首页|中医临床预测模型研究方法学质量的系统评价

中医临床预测模型研究方法学质量的系统评价

扫码查看
目的 系统评价中医临床预测模型研究的方法学质量.方法 计算机检索PubMed、Embase、Web of Science、CNKI、WanFang Data、VIP和SinoMed数据库,搜集与中医临床预测模型研究相关的文献,检索时限均从建库至2023年3月31日.由2名研究者独立筛选文献和提取资料,并基于预测模型偏倚风险评估工具PROBAST评价纳入研究的偏倚风险.结果 共纳入113项中医临床预测模型研究(79项诊断模型研究和34项预后模型研究),其中111项(98.2%)研究存在高偏倚风险,各有1项(0.9%)研究为低偏倚风险和偏倚风险不清.统计分析领域被评为高偏倚风险的比例最高,其次是研究对象领域.由于特定研究信息的报告普遍缺失,大量研究在预测因子和预测结局领域中的偏倚风险不清.结论 现有中医临床预测模型研究的方法学质量普遍较差,几乎均存在高偏倚风险.产生偏倚风险的原因包括非前瞻性设计的数据来源、结局定义包含预测因子、建模样本量不足、特征选择不合理、性能评估欠准确和内部验证方法错误.未来建模研究需针对模型的设计、构建、评价和验证进行全方位的方法学质量改进,并全面报告模型的所有关键信息,以促进其在医疗实践中的转化应用.
Methodological quality evaluation on clinical prediction models of traditional Chinese medicine:a systematic review
Objective To systematically review the methodological quality of research on clinical prediction models of traditional Chinese medicine.Methods The PubMed,Embase,Web of Science,CNKI,WanFang Data,VIP and SinoMed databases were electronically searched to collect literature related to the research on clinical prediction models of traditional Chinese medicine from inception to March 31,2023.Two reviewers independently screened literature,extracted data and assessed the risk of bias of the included studies based on prediction model risk of bias assessment tool(PROBAST).Results A total of 113 studies on clinical prediction models of traditional Chinese medicine(79 diagnostic model studies and 34 prognostic model studies)were included.Among them,111(98.2%)studies were rated at high risk of bias,while 1(0.9%)study was rated at low risk of bias and risk of bias of 1(0.9%)study was unclear.The analysis domain was rated with the highest proportion of high risk of bias,followed by the participants domain.Due to the widespread lack of reporting of specific study information,risk of bias of a large number of studies was unclear in both predictors and outcome domain.Conclusion Most existing researches on clinical prediction models of traditional Chinese medicine show poor methodological quality and are at high risk of bias.Factors contributing to risk of bias include non-prospective data source,outcome definitions that include predictors,inadequate modeling sample size,inappropriate feature selection,inaccurate performance evaluation,and incorrect internal validation methods.Comprehensive methodological improvements on design,conduct,evaluation,and validation of modeling,as well as reporting of all key information of the models are urgently needed for future modeling studies,aiming to facilitate their translational application in medical practice.

Clinical prediction modelPrediction model researchMethodological qualitySystematic reviewTraditional Chinese medicine

景城阳、冯琳、李嘉琛、梁立荣、廖星

展开 >

中国中医科学院中医临床基础医学研究所循证医学基础研究室(北京 100700)

首都医科大学附属北京朝阳医院北京市呼吸疾病研究所临床流行病学研究室(北京 100020)

临床预测模型 预测模型研究 方法学质量 系统评价 中医

国家自然科学基金中国中医药循证医学中心业务研究室主任专项中国中医科学院科技创新工程项目中国中医科学院科技创新工程项目

821742392020YJSZX-2CI2021A00701-3CI2021A05503

2024

中国循证医学杂志
四川大学

中国循证医学杂志

CSTPCD北大核心
影响因子:1.761
ISSN:1672-2531
年,卷(期):2024.24(3)
  • 139