首页|2007-2020年烟台市人均预期寿命影响因素及预测分析

2007-2020年烟台市人均预期寿命影响因素及预测分析

扫码查看
目的 了解烟台市人均预期寿命的主要影响因素和变化趋势,为基层政府决策提供参考.方法 利用2007-2020年烟台市死因登记报告数据,收集社会、经济和环境共9种影响因素,采用Joinpoint回归分析变化趋势,计算平均年度变化百分比(average annual percent change,AAPC)、岭回归分析影响因素,以及灰色神经网络模型(grey neural network model,GNNM)对2021-2025年人均预期寿命进行预测.结果 2007-2020年烟台市人均预期寿命呈明显的逐年上升趋势(AAPC=0.50,95%CI:0.33~0.68),每万人卫生技术人员数对人均预期寿命的正向影响程度最大,人口加权PM2.5为负向影响程度最大,而婴儿死亡率和归一化植被指数(normalized difference vegetation index,NDVI)影响差异无统计学意义(P>0.05);每万人卫生技术人员数、人均国内生产总值(gross domestic product,GDP)、人均可支配收入、人均医疗保健支出和人均教育支出每增加1个单位,人均预期寿命将分别提高0.034、0.135、0.163、0.292和0.140岁;人口加权PM2.5和SO2排放量每增加1个单位,人均预期寿命将分别减少0.015和0.041岁;经GNNM(1.6)模型预测显示,2021-2025年烟台市人均预期寿命将缓慢增长,2025年人均预期寿命为82.11岁.结论 2007-2020年烟台市社会经济发展水平的提升和医疗卫生条件的改善明显促进了烟台市人均预期寿命的增长.
Analysis of influencing factors and projections of life expectancy in Yantai City from 2007 to 2020
Objective To analyze the influencing factors and trends of life expectancy and to forecast the life expectancy for residents in Yantai City,in order to provide reference for local government in decision-making.Methods The death registry data of residents in Yantai from 2007-2020 were extracted,and 9 potential influencing factors regarding society,economy and environment were collected.Joinpoint regression was applied to estimate the average annual percent change(AAPC)of life expectancy in 2007-2020,ridge regression to evaluate the impact of those influencing factors,and grey neural network modeling(GNNM)for forecasting life expectancy from 2021 to 2025.Results The life expectancy in Yantai showed an obvious upward trend year by year from 2007 to 2020(AAPC=0.50,95%CI:0.33-0.68).The number of health technicians per 10 000 persons had the largest positive effect on life expectancy,and the population-weighted PM2.5 had the largest negative effect on it,while infant mortality and normalized difference vegetation index(NDVI)had no statistically significant effect on life expectancy(P>0.05).Life expectancy would increase by 0.034,0.135,0.163,0.292 and 0.140 years respectively for every 1 unit increase in the number of health technicians per 10 000 persons,gross domestic product(GDP)per capita,disposable income per capita,healthcare expenditure per capita and education expenditure per capita;life expectancy would decrease by 0.015 and 0.041 years respectively for every 1 unit increase in the population-weighted PM2.5 and SO2 emission.The forecast of GNNM(1,6)model showed that life expectancy of Yantai would increase slowly from 2021 to 2025,reaching 82.11 years by 2025.Conclusions Life expectancy of Yantai had been promoted obviously with social economic development and improvement in medical and health services over the period from 2007 to 2020.

Life expectancyPopulation-weightedNormalized difference vegetation indexGrey neural networkForecast

刘海韵、王倩倩、王茂波、于绍轶、曲淑娜、张红杰

展开 >

山东中医药高等专科学校医学系,山东烟台 264199

烟台市疾病预防控制中心

人均预期寿命 人口加权 归一化植被指数 灰色神经网络 预测

山东省疾病卫生科技发展计划项目

2021MSGY041

2024

中国预防医学杂志
中华预防医学会

中国预防医学杂志

CSTPCD
影响因子:1.004
ISSN:1009-6639
年,卷(期):2024.25(1)
  • 19