首页|拜阿司匹林联合氯比格雷治疗PCI术后患者1年再入院风险预测模型构建

拜阿司匹林联合氯比格雷治疗PCI术后患者1年再入院风险预测模型构建

扫码查看
目的 探究拜阿司匹林联合氯比格雷治疗经皮冠状动脉介入术(PCI)术后患者1年再入院危险因素,并构建风险预测模型。方法 回顾性分析2020年1月至2023年6月丽水市人民医院心内科初次行PCI的心肌梗死(MI)患者的临床资料。根据1年内是否因心肌再梗死或MI并发症再次入院分为再入院组(RG)和非再入院组(NRG)。采用单因素分析探究RG和NRG组间差异变量。采用(逐步)多因素Logistic回归探究PCI术后患者1年再入院的危险因素及"最优模型",使用R software对"最优模型"进行可视化,转化为Nomogram风险预测模型。采用受试者工作特征曲线(ROC)评估Nomogram风险预测模型的预测能力;采用校准曲线(重取样,Bootstrap n=1 000)评估Nomogram风险预测模型的校准度;采用决策曲线评估Nomogram风险预测模型的净获益大小。结果 研究共纳入患者100例,1年内再入院率为34。00%。年龄(≥63岁)、糖尿病、病变血管数(≥ 2支)、单核细胞计数-高密度脂蛋白比值(≥ 0。36)和预后营养指数(<39。39)是PCI术后MI患者再入院的独立危险因素(P<0。05)。ROC分析表明,再入院风险预测模型预测PCI后MI患者再入院效能较好,其ROC曲线下面积为0。903[95%CI(0。836,0。970)]。校准曲线表明预测再入院概率和实际再入院概率大致符合;决策曲线表明再入院风险预测模型Nomogram净获益高于全部临床净获益。结论 本研究所构建的PCI术后MI患者再入院预测模型,能较为准确地识别再入院的高危人群,可有利于临床对PCI术后患者进行规范化管理,提高患者的长期预后。
Construction of a risk prediction model for 1-year readmission in patients undergoing percutaneous coronary intervention treated with bayaspirin combined with clopidogrel
Objective To explore the risk factors of 1-year readmission in patients after percutaneous coronary intervention(PCI)treated with Bayaspirin combined with Clopidogrel and to construct a risk prediction model.Methods The clinical data of patients with myocardial infarction(MI)who underwent primary PCI in the Department of Cardiovascular Medicine of Lishui People's Hospital from January 2020 to June 2023 were retrospectively analyzed.The patients were divided into the readmission group(RG)and the non-readmission group(NRG)according to whether they were readmitted due to myocardial reinfarction or complications of MI within 1 year.Univariate analysis was used to explore the differential variables between the RG and NRG groups.Multivariate Logistic regression(Stepwise)was used to explore the risk factors of 1-year readmission in patients after PCI and the"optimal model".The"optimal model"was visualized using R software and transformed into a nomogram risk prediction model.The predictive ability of the Nomogram risk prediction model was evaluated using the receiver operating characteristic(ROC)curve.The calibration of the Nomogram risk prediction model was evaluated using the calibration curve(resampling,Bootstrap n=1 000).The net benefit of the nomogram risk prediction model was evaluated using the decision curve.Results A total of 100 patients were included in the study and the readmission rate within 1 year was 34.00%.Age(≥63 years old),diabetes,the number of diseased vessels(≥2),monocyte-high-density lipoprotein ratio(≥0.36),and prognosis nutrition(<39.39)were independent risk factors for readmission in patients with MI after PCI(all P<0.05).ROC analysis showed that the readmission risk prediction model had a good predictive efficiency for readmission in patients with MI after PCI,with an area under ROC curve of 0.903(95%CI:0.836-0.970).The calibration curve showed that the"predicted readmission probability"was approximately consistent with the"actual readmission probability";the decision curve showed that the net benefit of the readmission risk prediction model nomogram was higher than that of the"all"clinical net benefit.Conclusion The readmission prediction model of patients with MI after PCI constructed in this study can accurately identify high-risk groups of readmission and may be beneficial for the standardized management of patients after PCI in clinical practice,improve the long-term prognosis of patients.

Myocardial infarctionPercutaneous coronary interventionReadmissionPredictive modelBayaspirinClopidogrel

吕远、陈佩佩、吴琼碧、张伟

展开 >

丽水市人民医院心内科(浙江丽水 323000)

丽水市人民医院急诊科(浙江丽水 323000)

心肌梗死 经皮冠状动脉介入术 再入院 预测模型 拜阿司匹林 氯比格雷

2024

中国药师
国家药品监督管理局高级研修学院,武汉医药(集团)股份有限公司

中国药师

CSTPCD
影响因子:0.944
ISSN:1008-049X
年,卷(期):2024.28(9)