首页|基于孟德尔随机化及生物信息学分析宫颈癌和类风湿性关节炎的关系及关键基因、通路和潜在药物

基于孟德尔随机化及生物信息学分析宫颈癌和类风湿性关节炎的关系及关键基因、通路和潜在药物

扫码查看
目的 利用孟德尔随机化法寻找宫颈癌和类风湿性关节炎间的因果关联性,利用生物信息学方法,寻找两疾病间的基因关联性,获取潜在的治疗靶点.通过此两种方法阐明类风湿性关节炎(RA)可能影响宫颈癌(CC),并发现两疾病之间相互影响的基因靶点,为疾病的治疗和新药物的研发提供思路.方法 分别以类风湿性关节炎(ukb-b-11874)和宫颈癌(ukb-b-8777)为暴露因素和结局变量,选择与类风湿性关节炎具有显著相关性的单核苷酸多态性(SNPs)为工具变量,采用IVW法、WME法、Simple Mode法、Weighted Mode法和MR-Egger回归法进行孟德尔随机化(MR)分析,运用Cochran Q检验进行异质性分析.从GEO数据库下载了宫颈癌和类风湿性关节炎各1个数据集并筛选差异表达基因(DEGs).对两种疾病共有的DEGs进行了蛋白功能注释(GO)、富集通路(KEGG)分析.构建蛋白质互作分析(PPI)网络,识别两种疾病的中枢基因.使用药物特征数据库(DSigDB)来寻找潜在的治疗药物.结果 共筛选出3个SNPs作为工具变量,IVW结果显示,类风湿性关节炎是宫颈癌发病风险的危险因素(OR=1.575>1,P<0.05);MR-Egger、WME、Simple Mode、Weighted Mode 效应估计值具有相似的统计结果.敏感性分析发现没有对因果估计结果产生影响较大的SNP.通过对宫颈癌和类风湿性关节炎2个数据集整合,获得53个DEGs,发现与双疾病相关的8个中枢基因,并根据潜在治疗靶点,找到治疗宫颈癌和类风湿性关节炎潜在治疗药物.结论 本研究通过孟德尔随机化研究方法证明类风湿性关节炎与宫颈癌风险之间存在因果关系,生物信息学方法进一步证明两种疾病之间存在显著的基因关联.鉴定出的基因、通路和药物,给临床工作中两种疾病的诊断及治疗提供新思路.
Mendelian randomisation and bioinformatics-based analysis of the relationship between cervical cancer and rheumatoid arthritis and key genes,pathways and potential drugs
Objective To search for causal associations between cervical cancer and rheumatoid arthritis using Mendelian randomisation,and to search for genetic associations between the two diseases using bioinformatics to obtain po-tential therapeutic targets.These two methods will elucidate the possible effects of rheumatoid arthritis on cervical cancer and identify genetic targets that interact between the two diseases,providing ideas for disease treatment and new drug development.Methods Rheumatoid arthritis(ukb-b-11874)and cervical cancer(ukb-b-8777)were used as exposure factors and outcome variables,respectively,and SNPs with significant correlation with rheumatoid arthritis were selected as instrumental variables,and IVW,WME,Simple Mode,Weighted Mode and MR-Egger regression methods were used for the MR analysis,and het-erogeneity was analysed using Cochran Q test.One dataset each of cervical cancer and rheumatoid arthritis was downloaded from the GEO database and screened for DEGs,and the DEGs common to both diseases were subjected to GO functional an-notation and KEGG pathway enrichment analysis.PPI networks were constructed to identify the central genes of the two dis-eases.A drug signature database(DSigDB)was used to find potential therapeutic agents.Results A total of 3 SNPs were screened as instrumental variables,and the IVW results showed that rheumatoid arthritis was a risk factor for the risk of cer-vical cancer(OR=1.575>1,P<0.05).MR-Egger,WME,Simple Mode,Weighted Mode effect estimates had similar statistical results.Sensitivity analyses revealed that there were no SNPs that had a significant impact on the causal estimates.By inte-grating the two datasets of cervical cancer and rheumatoid arthritis,53 DEGs were obtained,8 central genes associated with the two diseases were identified,and potential therapeutic drugs for cervical cancer and rheumatoid arthritis were identified based on potential therapeutic targets.Conclusion This study demonstrated a causal relationship between rheumatoid arthritis and the risk of cervical cancer by Mendelian randomisation study methods,and bioinformatics methods further demonstrated a significant genetic association between the two diseases.The identified genes,pathways and drugs provide new ideas for the diagnosis and treatment of the two diseases in clinical work.

cervical cancerrheumatoid arthritisMendelian randomisation studiesbioinformaticsdisease interre-lationships

韦乐川、庞文文、杨航、张建军

展开 >

潍坊医学院临床医学院,山东潍坊 261053

潍坊医学院附属医院产科/潍坊市产后盆底肌电康复重点实验室,山东潍坊 261000

宫颈癌 类风湿性关节炎 孟德尔随机化研究 生物信息学 疾病相互关系

潍坊市科技局科技发展计划项目

2022YX027

2024

中国优生与遗传杂志
中国优生科学协会

中国优生与遗传杂志

CSTPCD
影响因子:0.527
ISSN:1006-9534
年,卷(期):2024.32(1)
  • 29