首页|基于多参数MRI影像组学模型预测乳腺癌NMUR1甲基化状态的研究

基于多参数MRI影像组学模型预测乳腺癌NMUR1甲基化状态的研究

扫码查看
目的 探究基于多参数磁共振成像(MRI)影像组学特征构建的预测模型在预测乳腺癌神经调节素U受体1(NMUR1)基因甲基化状态中的临床价值.方法 回顾性分析2018年1月至2023年1月于达州市中西医结合医院就诊的乳腺癌患者258例,根据2:1的比例分配,训练集患者172例,验证集患者86例.利用磁分离技术获取乳腺癌细胞,采用甲基化特异性PCR方法检测NMUR1甲基化状态,根据检测结果将训练集患者分为乳腺癌NMUR1甲基化阳性组(n=93)和乳腺癌NMUR1甲基化阴性组(n=79).利用MRI行T2WI-FS、DWI、DCE多参数扫描获取患者乳腺癌病灶信息.多因素Logistic回归分析临床资料中乳腺癌NMUR1甲基化状态独立影响因素;单因素方差分析和最小绝对收缩和选择算子(LASSO)回归降维多参数MRI影像组学特征,构建单一序列影像组学标签;多因素回归分析影像组学特征并构建合并序列影像组学评分模型;合并序列影像组学特征结合临床资料构建联合模型;采用受试者工作特征曲线(ROC)、Hosmer-Lemeshow检验和校准曲线评价模型预测能力,采用临床决策曲线(DCA)评估影像组学联合模型临床意义.结果 临床资料中乳腺癌家族史、肿瘤分期晚期、淋巴结转移、三阴型乳腺癌是乳腺癌NMUR1甲基化状态的独立影响因素(P<0.05);单因素方差分析和LASSO回归降维后最终获得58个影像组学特征,其中 DCE 17 个,T2WI-FS 13 个,DWI28 个;影像组学特征中 ClusterProminence_angle 135_offset4.1、DifferenceEntropy.1、GLCMEntropy_angle0_offset1.2、DifferenceEntropy.1、ADC.Quantile95、ADC.Minlntensity 为乳腺癌 NMUR1 甲基化状态的独立影响因素(P<0.05);相较于单一序列影像组学标签,合并序列影像组学评分模型区分度更高(P<0.05);联合模型区分度和准确度较高,预测效果较好,具有较高的临床价值.结论 乳腺癌家族史、肿瘤分期晚期、淋巴结转移、三阴型乳腺癌是乳腺癌NMUR1甲基化状态的独立影响因素,由合并序列影像组学特征联合临床资料构建的联合模型在预测乳腺癌NMUR1基因甲基化状态中具有较高的临床价值.
Research on predicting the methylation status of NMUR1 in breast cancer based on a multi-parameter MRI radiomics model
Objective To explore the clinical value of a predictive model constructed by multi-parameter magnetic resonance imaging(MRI)radiomics features in predicting the methylation status of neuromedin U receptor 1(NMUR1)gene in breast cancer.Methods A retrospective analysis was conducted on 258 patients with breast cancer who were treated at Dazhou integrated TCM & Western Medicine Hospital from January 2018 to January 2023.The patients were divided into a training set(n=172)and a validation set(n=86)in a ratio of 2:1.Breast cancer cells were obtained using magnetic separation techniques,and the methylation status of NMUR1 gene was detected by methylation-specific PCR.Based on the detection results,the patients in the training set were divided into NMUR1 methylation-positive group(n=93)and NMUR1 methyla-tion-negative group(n=79).Multi-parametric MRI scans including T2WI-FS,DWI and DCE were performed to obtain breast cancer lesion information.Multivariate Logistics regression analysis was used to determine the independent factors influenc-ing the NMUR1 methylation status in clinical data.Univariate analysis of variance and least absolute shrinkage and selection operator(LASSO)regression were used to reduce the dimensionality of the multi-parameter MRI radiomics features and a single sequence radiomics label was constructed.Multivariable regression analysis was performed on the radiomics features to build a combined sequence radiomics score model.The combined sequence radiomics features,together with clinical features,were used to construct a joint model.The predictive ability of the model was evaluated using receiver operating characteristic(ROC)curve,Hosmer-Lemeshow test and calibration curve.The clinical significance of the radiomics combined model was assessed using clinical decision curve(DCA).Results Family history of breast cancer,advanced tumor stage,lymph node metastasis and triple-negative breast cancer were independent factors influencing the methylation status of NMUR1 gene in clinical data(P<0.05).After univariate analysis of variance and LASSO regression,58 radiomics features were ultimately obtained,including 17 from DCE,13 from T2WI-FS and 28 from DWI.Among the radiomics features,ClusterPromi-nence_anglel35_offset4.1,DifferenceEntropy.l,GLCMEntropy_angle0_offset1.2,DifferenceEntropy.1,ADC.Quantile95 and ADC.Minlntensity were independent factors influencing the methylation status of NMUR1 gene(P<0.05).The combined sequence radiomics score model had higher discrimination power compared to the single sequence radiomics label(P<0.05).The joint model had high discrimination power and accuracy and showed good predictive performance,demonstrating sig-nificant clinical value.Conclusion Family history of breast cancer,advanced tumor stage,lymph node metastasis and tri-ple-negative breast cancer are independent factors influencing the methylation status of NMUR1 gene in breast cancer.The joint model constructed with combined sequence radiomics features and clinical data has high clinical value in predicting the methylation status of NMUR1 gene in breast cancer.

breast cancermagnetic resonance imagingneuromedin U receptor 1methylationradiomics

郑斌荣、李萍、张昊

展开 >

达州市中西医结合医院影像中心,四川达州 635000

乳腺癌 磁共振 神经介素U受体1 甲基化 影像组学

2024

中国优生与遗传杂志
中国优生科学协会

中国优生与遗传杂志

CSTPCD
影响因子:0.527
ISSN:1006-9534
年,卷(期):2024.32(1)
  • 24