首页|基于动态增强磁共振成像的影像组学模型对肉芽肿性乳腺炎与乳腺癌的鉴别诊断价值

基于动态增强磁共振成像的影像组学模型对肉芽肿性乳腺炎与乳腺癌的鉴别诊断价值

Differential Diagnosis of Dynamic Contrast-Enhanced-MRI-Based Radiomics Model for Granulomatous Mastitis and Breast Cancer

扫码查看
目的 探讨基于动态增强磁共振成像的影像组学模型对肉芽肿性乳腺炎与乳腺癌的鉴别诊断价值.资料与方法 回顾性收集2019年 2月—2022年 1月于中国中医科学院西苑医院经病理证实为肉芽肿性乳腺炎和乳腺癌的患者MRI资料共82例,基于动态增强磁共振成像增强扫描第一期图像,分别用半自动分割法和手工逐层勾画分割感兴趣区,随机分配99个感兴趣区到训练组 69 个,测试组 30 个,比较两种方法所提取数据组间一致性差异.将半自动分割法所提取原始数据通过相关性分析和多因素逻辑回归法进行特征筛选.采用 6 种分类器(逻辑回归、支持向量机、朴素贝叶斯、决策树、随机森林、K最邻近)构建预测模型,评估各模型的诊断效能、准确度、敏感度和特异度的差异.结果 82 例患者共分割出 99 个病灶(肉芽肿性乳腺炎37 个,乳腺癌 62 个).采用两种感兴趣区分割法所提取影像组学数据组间一致性欠佳[组内相关系数为 0.68(0.51,0.78)].半自动分割法所提取数据构建的 6 个预测模型中,逻辑回归模型和支持向量机模型诊断效能显著优于其他模型,逻辑回归模型诊断效能和稳定性最佳(训练组:曲线下面积0.928,准确度0.855,敏感度0.837,特异度0.885;测试组:曲线下面积0.933,准确度0.833,敏感度0.895,特异度0.727).结论 基于动态增强磁共振成像的影像组学可以为肉芽肿性乳腺炎与乳腺癌的鉴别诊断提供较高价值.感兴趣区的分割方法更推荐半自动分割法,逻辑回归和支持向量机构建的预测模型具有更好的诊断效能和稳定性.
Purpose To investigate the value of a radiomics model based on dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI)in the differential diagnosis of granulomatous mastitis and breast cancer.Materials and Methods The MRI data of 82 patients with granulomatous mastitis or breast cancer confirmed by pathology in Xiyuan Hospital of China Academy of Chinese Medical Sciences from February 2019 to January 2022 were retrospectively collected.Based on the first phase of DCE-MRI,the regions of interest(ROI)were delineated layer by layer by semi-automatic segmentation method and manual segmentation method,respectively.99 ROI were randomly assigned to 69 in training groups and 30 in test groups.The consistency difference between the two methods was compared.The original data extracted by the semi-automatic segmentation method were screened by correlation analysis and multi-factor Logistic regression.Six kinds of classifiers(Logistic regression,support vector machine,naive Bayes,decision tree,random forest,K nearest neighbor)were used to construct prediction models,and the differences in diagnostic efficiency,accuracy,sensitivity and specificity of each model were evaluated.Results A total of 99 lesions(n=37 cases with granulomatous mastitis and n=62 cases with breast cancer)were segmented from 82 patients.The radiomics data extracted by the two ROI segmentation methods had poor consistency between groups[Intraclass correlation coefficient=0.68(0.51,0.78)].Among the six prediction models constructed from the data extracted by the semi-automatic segmentation method,the diagnostic performance of the Logistic regression model and the support vector machine model was significantly better than those of other models,and the Logistic regression model had the best diagnostic performance and stability(training group:area under the curve 0.928,accuracy rate 0.855,sensitivity 0.837,specificity 0.885;test group:area under the curve 0.933,accuracy 0.833,sensitivity 0.895,specificity 0.727,respectively).Conclusion Radiomics based on DCE-MRI can provide high value for the differential diagnosis of granulomatous mastitis and breast cancer.The semi-automatic segmentation method is more recommended for the segmentation method of ROI.The prediction model constructed by Logistic regression and support vector machine shows better diagnostic efficiency and stability.

Breast neoplasmsGranulomatous mastitisMagnetic resonance imagingRadiomicsDiagnosis,differential

刘鹏、于晓晶、李春志、任华、孟玉莲

展开 >

中国中医科学院西苑医院放射科,北京 100091

乳腺肿瘤 肉芽肿性乳腺炎 磁共振成像 影像组学 诊断,鉴别

中国中医科学院科技创新工程

CI2021A03322

2024

中国医学影像学杂志
中国医学影像技术研究会

中国医学影像学杂志

CSTPCD北大核心
影响因子:1.37
ISSN:1005-5185
年,卷(期):2024.32(2)
  • 22