首页|基于临床、能谱CT及影像组学构建胃癌神经侵犯的预测模型

基于临床、能谱CT及影像组学构建胃癌神经侵犯的预测模型

Prediction Model of Perineural Invasion of Gastric Cancer Based on Clinical,Spectral CT and Radiomics

扫码查看
目的 探讨基于临床资料、能谱 CT 参数及影像组学特征的模型术前预测胃癌神经侵犯的价值.资料与方法 回顾性分析2021 年1月—2022年8 月新乡医学院第一附属医院 80例行术前能谱CT检查的胃癌患者,根据病理结果分为神经侵犯阳性组和阴性组.收集患者临床病理资料,测量胃癌原发病灶能谱参数,进行单因素分析;从双期混合能量图像中提取 214 个影像组学特征,使用单因素分析及支持向量机对组学特征进行筛选;将差异有统计学意义的变量纳入 Logistic 回归分析构建预测模型.使用受试者工作特征曲线评价模型的性能.结果 两组患者性别、糖类抗原199、肿瘤厚度、Lauren分型、Borrmann分型差异有统计学意义(P均<0.05);能谱参数中,两组动脉期单能量值(CT60 keV~CT110 keV)差异有统计学意义(P均<0.05),门静脉期CT值、碘基值、标准化碘基值和除CT80 keV外的单能量值差异有统计学意义(P均<0.05);影像组学分析选出曲线下面积最大的支持向量机模型,其曲线下面积、敏感度、特异度、准确度、P值及参数分别为0.843、0.923、0.714、0.925、<0.001、c∶g 2.64∶10.56.最后基于Logistic回归算法分别建立临床模型、能谱CT模型、影像组学模型、临床+能谱模型、临床+影像组学模型、能谱+影像组学模型,临床+能谱+影像组学模型,其中临床+能谱+影像组学模型诊断胃癌神经侵犯的效能最好,其曲线下面积、最佳阈值、约登指数、敏感度、特异度分别为0.927(95%CI 0.850~1.000)、0.879、0.778、0.778、1.000.结论 基于临床特征、能谱CT参数及影像组学建立的联合模型对术前预测胃癌神经侵犯具有较好的价值.
Purpose To explore the value of model based on clinical data,spectral CT parameters and radiomics features in predicting perineural invasion of gastric cancer before operation.Materials and Methods A total of 80 patients with gastric cancer who underwent preoperative spectral CT examination in the First Affiliated Hospital of Xinxiang Medical University from January 2021 to August 2022 were retrospectively analyzed.They were divided into perineural invasion positive group and perineural invasion negative group according to the pathological results.The clinicopathological data of patients were collected and the spectral CT parameters of primary lesions of gastric cancer were measured for univariate analysis.214 radiomics features were extracted from biphasic mixed energy images and screened by univariate analysis and support vector machine.Statistically significant variables were included in multivariate Logistic regression analysis to construct a prediction model.The receiver operating characteristic curve was used to evaluate the performance of the model.Results In the clinical data,there were significant differences in gender,CA199,diameter,Lauren type and Borrmann classification between the two groups(all P<0.05).In spectral CT parameters,there were significant differences in CT60 keV-CT110 keV monoenergetic CT values in arterial phase,CT values,iodine concentration,normalized iodine concentration and other monoenergetic CT values except CT80 keV in portal vein phase between the two groups(all P<0.05).The radiomics analysis showed that the support vector machine model with the largest area under curve was chosen,and its area under curve,sensitivity,specificity,accuracy,P-value,and parameters were 0.843,0.923,0.714,0.925,<0.001 and c∶g 2.64∶10.56,respectively.Finally,based on Logistic regression algorithm,clinical model,spectral CT model,radiomics model,clinical+ spectral model,clinical+radiomics model,spectral+radiomics model and clinical+spectral+radiomics model were established to predict the risk of gastric cancer perineural invasion.The diagnostic efficacy of clinical+spectral+radiomics model was the best,and its area under curve,optimal threshold,Youden index,sensitivity and specificity were 0.927(95%CI 0.850-1.000),0.879,0.778,0.778 and 1.000,respectively.Conclusion The combined model based on clinical features,spectral CT parameters and radiomics features is of good value in predicting perineural invasion of gastric cancer before operation.

Stomach neoplasmsPerineural invasionTomography,X-ray computedRadiomicsDiagnosis,differential

甄思雨、梁长华、王笑天、魏正琦、危涵羽、姚阳阳

展开 >

新乡医学院第一附属医院放射科,河南 新乡 453100

西南大学计算机与信息科学学院软件学院,重庆 400715

胃肿瘤 神经侵犯 体层摄影术,X线计算机 影像组学 诊断,鉴别

河南省医学科技攻关计划

LHGJ20210512

2024

中国医学影像学杂志
中国医学影像技术研究会

中国医学影像学杂志

CSTPCD北大核心
影响因子:1.37
ISSN:1005-5185
年,卷(期):2024.32(4)
  • 25