首页|超短回波时间MRI影像组学对非小细胞肺癌组织学亚型的预测价值

超短回波时间MRI影像组学对非小细胞肺癌组织学亚型的预测价值

Prediction of Ultrashort Echo Time MRI-Based Radiomics for Histological Subtypes of Non-Small Cell Lung Cancer

扫码查看
目的 探索超短回波时间磁共振成像(UTE-MRI)影像组学模型对非小细胞肺癌组织学亚型的预测能力.资料与方法回顾性分析2022年2-12月于郑州市第七人民医院行UTE-MRI检查的67例非小细胞肺癌的影像资料,并提取影像组学特征,采用最小绝对收缩和选择算子及SelectKBest进行组学特征筛选.采用逻辑回归分析和受试者工作特征曲线分别建立预测模型和评估诊断效能.基于1 000次采样的Bootstrap和校准曲线用于预测模型的验证.结果 共筛选出1个灰度游程长度矩阵特征、1 个邻域灰度差矩阵特征和 3 个灰度区域大小矩阵特征用于建立预测模型.受试者工作特征曲线显示,该模型能够较好地鉴别鳞癌和腺癌,曲线下面积为0.903(95%CI 0.806~0.962),敏感度和特异度分别为88.64%和78.26%.在基于Bootstrap的验证中,该模型具有较高的性能,曲线下面积为0.882(95%CI 0.858~0.896);校准曲线显示该模型的预测值与实际观测值一致性较好.结论 基于 UTE-MRI 影像组学特征的预测模型能够有效鉴别肺鳞癌和腺癌,有望为术前无创评估非小细胞肺癌的组织学亚型提供一种新的选择.
Purpose To explore the predictive ability of an ultrashort echo time magnetic resonance imaging(UTE-MRI)based radiomic model for histological subtypes of non-small cell lung cancer.Materials and Methods The imaging data of 67 non-small cell lung cancer patients who underwent UTE-MRI at the 7th People's Hospital of Zhengzhou from February to December 2022 were retrospectively analyzed,and radiomic features were also extracted.Least absolute shrinkage and selection operator and SelectKBest were used for histological feature screening.Logistic regression analysis and receiver operating characteristic curve were used for the development of prediction model and the assessment of diagnostic performance,respectively.Bootstrap(1 000 samples)and calibration curves were used for validation of the prediction model.Results One gray-level run-length matrix feature,one neighborhood gray-tone difference matrix feature and three gray-level size-zone matrix features were screened for the development of the prediction model.The receiver operating characteristic curve showed that the model was able to discriminate between squamous cell carcinoma and adenomatous carcinoma with an area under the curve of 0.903(95%CI 0.806-0.962),the sensitivity and specificity of 88.64%and 78.26%,respectively.The model also showed high performance in the Bootstrap-based validation,with an area under the curve of 0.882(95%CI 0.858-0.896),while the calibration curve showed good agreement between the model's predictions and actual observations.Conclusion A prediction model based on the radiomic features of UTE-MRI can effectively discriminate between squamous cell carcinoma and adenomatous carcinoma of the lung,and is expected to provide a new option for non-invasive evaluation of preoperative histological subtypes in non-small cell lung cancer.

Carcinoma,non-small-cell lungMagnetic resonance imagingRadiomicsHistological subtypesForecasting

杨帆、赵婧、王竞、李云

展开 >

郑州市第七人民医院磁共振科,河南 郑州 450000

郑州市第七人民医院核医学科,河南 郑州 450000

贵州医科大学第一附属医院核医学科,贵州 贵阳 550000

癌,非小细胞肺 磁共振成像 影像组学 组织学亚型 预测

河南省医学科技公关计划联合共建项目

LHGJ20200519

2024

中国医学影像学杂志
中国医学影像技术研究会

中国医学影像学杂志

CSTPCD北大核心
影响因子:1.37
ISSN:1005-5185
年,卷(期):2024.32(7)
  • 8