首页|不同超声影像组学模型鉴别皮下组织血管瘤和卡波西型血管内皮瘤

不同超声影像组学模型鉴别皮下组织血管瘤和卡波西型血管内皮瘤

Differential Diagnosis Between Subcutaneous Hemangioma and Kaposiform Hemangioendothelioma via Different Ultrasonography-Based Radiomics Models

扫码查看
目的 通过构建两种超声影像组学模型鉴别皮下组织血管瘤与卡波西型血管内皮瘤,评价不同超声影像组学模型鉴别两种疾病的价值,比较两种模型诊断效能的差异.资料与方法 回顾性分析 2020 年 8 月—2022 年 5 月于河南省人民医院血管瘤科就诊并经临床或病理证实的皮下组织血管瘤或卡波西型血管内皮瘤患者90例,应用影像组学方法提取图像特征,采用最小绝对收缩和选择算法对特征降维,使用支持向量机和随机森林构建影像组学模型,对比不同模型的诊断效能.结果 基于精选的10个影像组学特征建立两种模型,支持向量机模型训练组和验证组的曲线下面积、准确度、敏感度、特异度、阳性预测值及阴性预测值分别为0.902(95%CI 0.887~0.917)、92.1%、85.0%、92.3%、90.9%、93.5%和0.827(95%CI 0.787~0.856)、85.2%、70.0%、94.1%、90.9%、85.0%;随机森林模型训练组和验证组上述指标分别为0.960(95%CI 0.938~0.983)、98.4%、96.4%、97.8%、98.1%、97.2%和0.742(95%CI 0.699~0.785)、77.8%、57.1%、82.3%、79.6%、62.5%.训练组和验证组两种模型曲线下面积差异均有统计学意义(Z=-3.306、-2.009,P<0.05).结论 超声影像组学可以鉴别皮下组织血管瘤与卡波西型血管内皮瘤,支持向量机模型在小样本数据中的诊断效能更稳定.
Purpose To identify hemangioma(HE)and Kaposiform hemangioendothelioma(KHE)by constructing two ultrasonography-based radiomics models to evaluate the application value of two models in distinguishing HE from KHE,and to compare the diagnostic efficiency of two models.Materials and Methods A total of 90 lesions of subcutaneous HE or KHE confirmed clinically or pathologically from Henan Provincial People's Hospital from August 2020 to May 2022,were retrospectively analyzed.Imaging features were extracted by using Pyradiomics and screened out by the least absolute shrinkage and selection operator algorithm.Support vector machine and random forest were used to construct the radiomics models.Then the diagnostic efficacy of different models was compared.Results Based on the selected 10 radiomics features,the area under the curve,accuracy,sensitivity,specificity,positive and negative prediction the training group and validation group of the support vector machine model were 0.902(95%CI 0.887-0.917),92.1%,85.0%,92.3%,90.9%,93.5%and 0.827(95%CI 0.787-0.856),85.2%,70.0%,94.1%,90.9%,85.0%,respectively;and those in the training group and validation group of the random forest model were 0.960(95%CI 0.938-0.983),98.4%,96.4%,97.8%,98.1%,97.2%and 0.742(95%CI 0.699-0.785),77.8%,57.1%,82.3%,79.6%,62.5%,respectively.The area under the curve between two models in the training group and validation group was statistically significant(Z=-3.306,-2.009;P<0.05).Conclusion Ultrasonography-based radiomics can distinguish HE from KHE,support vector machine model shows more stable diagnostic performance in small sample data.

HemangiomaKaposiform hemangioendotheliomaUltrasonographyRadiomicsAlgorithms

牛雅宁、于一行、龚毓宾、董健、赵婧、吴刚

展开 >

河南大学人民医院超声科,河南 郑州 450003

河南省人民医院超声科,河南 郑州 450003

上海交通大学医学院附属瑞金医院妇产科,上海 200025

河南省人民医院血管瘤科,河南 郑州 450003

河南省人民医院医学影像科,河南 郑州 450003

展开 >

血管瘤 卡波西型血管内皮瘤 超声检查 影像组学 算法

2024

中国医学影像学杂志
中国医学影像技术研究会

中国医学影像学杂志

CSTPCD北大核心
影响因子:1.37
ISSN:1005-5185
年,卷(期):2024.32(7)
  • 11