首页|基于深度学习超声组学列线图评估浸润性乳腺癌侵袭转移的价值

基于深度学习超声组学列线图评估浸润性乳腺癌侵袭转移的价值

Value of Deep Learning Ultrasound Radiomics Nomogram to Assess Invasive Metastasis in Invasive Breast Cancer

扫码查看
目的 探讨深度学习超声组学列线图评估浸润性乳腺癌侵袭转移生物学特性指标的价值.资料与方法 回顾性收集2021年1月—2022年12月茂名市人民医院180例经病理证实浸润性乳腺癌患者的超声影像资料,且病理报告了淋巴结转移(LNM)或淋巴血管间隙浸润(LVSI)或神经侵犯(PNI)状态,依据LNM/LVSI/PNI状态,3个指标均以8∶2划分为训练队列和验证队列.基于Pyradiomics影像组学和ResNet50深度学习提取器分别提取1 316个影像组学特征和2 048个深度学习特征.采用随机森林机器学习算法开发评估模型,并计算模型评分.基于影像组学和深度学习模型评分开发深度学习超声组学列线图.使用受试者工作特征曲线评估模型的性能,Delong检验分析不同模型的性能差异.结果 在LNM、LVSI、PNI状态评估中,所有队列列线图曲线下面积均表现中度以上评估性能(≥0.73),准确度均>0.70,LNM评估中,训练队列的曲线下面积为0.97,准确度为0.93,敏感度为0.88,特异度为0.96.Delong检验显示列线图评估性能在训练队列中优于影像组学模型(LNM,Z=2.04,P=0.04;LVSI,Z=2.80,P=0.01;PNI,Z=3.52,P<0.01),优于或与深度学习模型相似(LNM,Z=4.52,P<0.01;LVSI,Z=1.86,P=0.06;PNI,Z=0.31,P=0.76).结论 深度学习超声组学列线图可有效评估浸润性乳腺癌侵袭转移生物学特性指标.列线图整合影像组学与深度学习特征信息提高了评估性能.
Purpose To explore the value of deep learning ultrasound radiomics nomogram in assessing the biological characteristics of invasive metastases in invasive breast cancer.Materials and Methods A retrospective collection of ultrasound imaging data from 180 pathologically confirmed invasive breast cancer between January 2021 to December 2022 in Maoming People's Hospital was conducted,with pathological reports indicating the status of lymph node metastasis(LNM),lymphovascular space invasion(LVSI)or perineural invasion(PNI),according to the LNM/LVSI/PNI status,the three indexes were divided into the training cohort and the verification cohort by 8∶2.Based on Pyradiomics and ResNet50 deep learning extractor,1 316 radiomic features and 2 048 deep learning features were extracted,respectively.The random forest machine learning algorithm was employed to develop evaluation models,and the model scores were calculated.The deep learning radiomics nomograms were developed based on the radiomic and deep learning model scores.The receiver operating characteristic curve was used to assess the performance of the models.The Delong test was applied to analyze the performance differences between different models.Results In the evaluation of LNM,LVSI and PNI status,the area under the curve of all the nomogram in the cohorts demonstrated moderate or above assessment performance(≥0.73),with accuracies all greater than 0.70.Specifically,in the LNM evaluation,the area under the curve of the training cohort was 0.97,the accuracy was 0.93,the sensitivity was 0.88 and the specificity was 0.96.Through the Delong test,the assessment performance of the nomograms was superior to the radiomics models(LNM,Z=2.04,P=0.04;LVSI,Z=2.80,P=0.01;PNI,Z=3.52,P<0.01),and was superior to or similar to the deep learning models(LNM,Z=4.52,P<0.01;LVSI,Z=1.86,P=0.06;PNI,Z=0.31,P=0.76)in the training cohort.Conclusion The deep learning radiomics nomogram can effectively evaluate the biological characteristics of invasion and metastasis in invasive breast cancer.The nomogram improves the assessment performance by integrating the radiomic and deep learning feature information.

Breast neoplasmsDeep learningRadiomicsUltrasonographyNomograms

李松桦、巫朝君、魏达友、黎少凤、罗有师、林艳、吴林永

展开 >

茂名市人民医院超声医学科,广东 茂名 525011

乳腺肿瘤 深度学习 超声组学 超声检查 列线图表

茂名市科技计划

2024109

2024

中国医学影像学杂志
中国医学影像技术研究会

中国医学影像学杂志

CSTPCD北大核心
影响因子:1.37
ISSN:1005-5185
年,卷(期):2024.32(8)
  • 8