首页|基于DWI深度学习特征的预测模型评估子宫内膜癌微卫星不稳定状态的价值

基于DWI深度学习特征的预测模型评估子宫内膜癌微卫星不稳定状态的价值

Application of Microsatellite Instability in Endometrial Cancer via A Prediction Model Based on Diffusion Weighted Imaging Deep Learning Features

扫码查看
目的 探索基于扩散加权成像(DWI)深度学习特征的预测模型在子宫内膜癌微卫星不稳定状态评估中的价值.资料与方法 回顾性分析2020年6月—2023年4月于新乡市中心医院行MRI检查的32例微卫星不稳定和55例微卫星稳定子宫内膜癌患者的DWI资料,测量原发病灶的表观扩散系数(ADC),并分别应用多层卷积神经网络和PyRadiomics提取原发病灶的深度学习特征和影像组学特征.使用最小绝对收缩和选择算子及随机森林进行特征筛选和模型建立,采用受试者工作特征曲线下面积(AUC)和净重新分类指数评估模型性能,基于1 000次重采样的Bootstrap进行模型内部验证.结果 深度学习模型共纳入6个特征,分别为第7、57、77、82、97和108个特征,AUC为0.905(95%CI0.823~0.957);影像组学模型共纳入6个特征,分别为1个邻域灰度差矩阵、4个灰度区域大小矩阵和1个灰度游程长度矩阵特征,AUC为0.844(95%CI0.751~0.913);微卫星不稳定组的ADC小于微卫星稳定组(t=-4.123,P<0.001),AUC为0.810(95%CI0.712~0.886).与影像组学模型和ADC相比,深度学习模型的风险预测效果得到改善,净重新分类指数分别为0.856和0.486(P<0.01,P=0.024).在基于Bootstrap的内部验证中深度学习模型也展示出较影像组学模型更高的性能,二者的AUC分别为0.897(95%CI 0.889~0.905)和0.829(95%CI0.812~0.839).结论 与影像组学模型和ADC相比,基于DWI图像深度学习特征的预测模型能够更好地评估子宫内膜癌患者的微卫星不稳定状态.
Purpose To explore the value of a prediction model based on diffusion weighted imaging(DWI)deep learning features in endometrial cancer microsatellite instability status assessment.Materials and Methods DWI data of 32 microsatellite instability and 55 microsatellite stability endometrial cancer patients were analysed from June 2020 to April 2023 in Xinxiang Central Hospital,retrospectively.Apparent diffusion coefficient(ADC)values of the primary lesions were measured,and deep learning features and imaging histological features of the primary lesions were extracted using multilayer convolutional neural networks and PyRadiomics,respectively.The least absolute shrinkage and selection operator and random forest were used for feature screening and model building,respectively.The area under the receiver operating characteristic curve(AUC)and net reclassification improvement were used to evaluate model performance.Bootstrap based on 1 000 resamples was used for internal validation of the model.Results For the deep learning model,a total of 6 features were included,the 7th,57th,77th,82nd,97th and 108th features,with an AUC of 0.905(95%CI 0.823-0.957);for the radiomics model,a total of 6 features were included,1 neighborhood grey level difference matrix,4 grey level region size matrices and 1 grey level tour length matrix feature,with an AUC was 0.844(95%CI 0.751-0.913);for ADC values,the microsatellite instability group had smaller ADC values than the microsatellite stability group(t=-4.123,P<0.001),with an AUC of 0.810(95%CI 0.712-0.886).Compared with the radiomics model and ADC values,the deep learning model showed improved risk prediction,with net reclassification improvements of 0.856 and 0.486(P<0.01,P=0.024),respectively.In Bootstrap-based internal validation,the deep learning model also demonstrated higher performance than the radiomics model,with AUCs of 0.897(95%CI0.889-0.905)and 0.829(95%CI0.812-0.839),respectively.Conclusion A prediction model based on deep learning features of DWI images can provide a better assessment of microsatellite instability status in endometrial cancer patients than radiomics model and ADC values.

Endometrial neoplasmsMagnetic resonance imagingDiffusion weighted imagingDeep learningRadiomicsMicrosatellite instability

牛永超、周芳、赵丹丹、侯孟岩、李淑建、张勇

展开 >

新乡市中心医院磁共振科,新乡市医学影像工程技术研究中心,河南新乡 453000

郑州大学第一附属医院磁共振科,河南 郑州 450000

子宫内膜肿瘤 磁共振成像 扩散加权成像 深度学习 影像组学 微卫星不稳性

河南省医学科技公关计划联合共建项目

LHGJ20210901

2024

中国医学影像学杂志
中国医学影像技术研究会

中国医学影像学杂志

CSTPCD北大核心
影响因子:1.37
ISSN:1005-5185
年,卷(期):2024.32(9)
  • 6