首页|基于CT特征和机器学习的鸟-胞内分枝杆菌复合群肺病和初治肺结核鉴别诊断模型的构建与验证

基于CT特征和机器学习的鸟-胞内分枝杆菌复合群肺病和初治肺结核鉴别诊断模型的构建与验证

Construction and Verification of Differential Diagnosis Model of Mycobacterium Avium-Intracellular Complex Group Lung Disease and Primary Pulmonary Tuberculosis Based on CT Features and Machine Learning

扫码查看
目的 基于胸部CT特征和机器学习构建并验证鸟-胞内分枝杆菌复合群肺病与肺结核的鉴别诊断模型.资料与方法 回顾性收集2021年 5月—2022年 8月于首都医科大学附属北京市胸科医院确诊为鸟-胞内分枝杆菌复合群肺病及肺结核患者作为训练集,并前瞻性收集 2022 年 9 月—2023 年 5 月河南中医药大学第一附属医院患者作为外部验证集.分析患者临床资料及影像学征象,分别采用逻辑回归、随机森林和支持向量机方法建立模型,并在验证集中进行外部验证.使用受试者工作特征曲线和精确率-召回率曲线评估模型的诊断效能,比较各模型曲线下面积的差异.结果 两组患者年龄和咯血率差异有统计学意义(t=30.414,P<0.001;χ2=6.186,P=0.013).两组空洞类型和形态差异有统计学意义(χ2=6.546,P=0.011;χ2=24.113,P<0.001),空洞病灶分布和特征差异无统计学意义(P>0.05).两组支气管扩张类型和分布差异有统计学意义(χ2=4.634,P=0.031;χ2=23.113,P<0.001).3种机器学习模型中,支持向量机模型较逻辑回归、随机森林模型的鉴别诊断效能更好,训练集和验证集中,受试者工作特征曲线下面积、敏感度、特异度、准确度、阳性预测值和阴性预测值分别为0.960、0.857、0.936、0.905、0.933、0.880和 0.885、0.767、0.800、0.783、0.793、0.774.精确率-召回率曲线显示支持向量机模型的精确率高且召回率低,即模型的性能良好.结论 基于临床特征和CT征象构建的机器学习模型具有较高的诊断效能,有助于提高鸟-胞内分枝杆菌复合群肺病和肺结核的鉴别诊断.
Purpose To construct and validate a machine learning-based diagnostic model for distinguishing between Mycobacterium avium-intracellular complex pulmonary disease(MAC-PD)and pulmonary tuberculosis(PTB)via chest CT images.Materials and Methods Retrospective data from patients diagnosed with MAC-PD and PTB between May 2021 and August 2022 at Beijing Chest Hospital,Capital Medical University,which were collected as the training set.The prospective external validation set was obtained from patients at the First Affiliated Hospital of Henan University of Chinese Medicine between September 2022 and May 2023.Clinical and radiological data were analyzed,and multivariable logistic regression,random forest and support vector machine(SVM)models were established and externally validated using the validation set.The diagnostic performance of models were evaluated using receiver operating characteristic curve and precision-recall curve,and the differences of the areas under the curve of various models were compared via the Delong test.Results There were significant differences in age and hemoptysis rate between the two groups(t=30.414,P<0.001;χ2=6.186,P=0.013).There were statistically significant differences in cavity types and morphology between the two groups(χ2=6.546,P=0.011;χ2=24.113,P<0.001),but there was no significant difference in the distribution and characteristics of cavitary lesions(P>0.05).There were significant differences in the types and distribution of bronchiectasis between the two groups(χ2=4.634,P=0.031;χ2=23.145,P<0.001).Compared with logistic regression and random forest models,the SVM model had better differential diagnostic performance,and the area under the receiver operating characteristic curve,sensitivity,specificity,accuracy,positive predictive value and negative predictive value were 0.960(95%CI 0.935-0.985),85.7%,93.6%,90.5%,93.3%,88.0%and 0.885(95%CI 0.803-0.967),respectively,76.7%,80.0%,78.3%,79.3%,77.4%.The precision-recall curve showed that the SVM model had high precision and low recall,that was,the model performs well.Conclusion The machine learning-based models exhibits excellent diagnostic performance and can assist in differentiating MAC-PD and PTB.

Mycobacterium avium complexTuberculosis,pulmonaryTomography,X-ray computedMachine learningDiagnosis,differential

张嘉诚、黄婷婷、何旭、韩鼎盛、许倩、时付坤、侯代伦、张岚

展开 >

河南中医药大学影像医学与核医学系,河南 郑州 450046

河南中医药大学第一附属医院放射科,河南 郑州 450000

首都医科大学附属北京市胸科医院放射科,北京 101149

河南中医药大学第一附属医院MRI科,河南中医药大学中医药信息智能分析与利用郑州市重点实验室,河南 郑州 450000

展开 >

鸟复合分枝杆菌 结核,肺 体层摄影术,X线计算机 机器学习 诊断,鉴别

河南省科学技术基金

222300420219

2024

中国医学影像学杂志
中国医学影像技术研究会

中国医学影像学杂志

CSTPCD北大核心
影响因子:1.37
ISSN:1005-5185
年,卷(期):2024.32(10)