首页|基于生境成像的多模态磁共振成像胶质瘤分级预测研究

基于生境成像的多模态磁共振成像胶质瘤分级预测研究

Research on glioma grading prediction based on habitat imaging using multimodal magnetic resonance imaging

扫码查看
目的:开发一种基于生境成像(HI)的机器学习算法,用于多模态磁共振成像(MRI)胶质瘤分级预测,构建支持向量机(SVM)模型和可视化胶质瘤异质性区域.方法:收集世界卫生组织(WHO)2019年脑肿瘤影像分割(BraTS)挑战赛中的335例胶质瘤患者数据集,其中高级别胶质瘤(HGG)259例,低级别胶质瘤(LGG)76例,基于HI技术划分子区域,使用PyRadiomics开源包提取感兴趣区域(ROI)影像特征,筛选出与高低级别相关性较强的特征,采用SVM模型对筛选的特征数据进行训练和分级预测,通过可视化表征分析胶质瘤在影像上的异质性.采用模型精确度指标F1分数(F1-score)和受试者工作特征(ROC)曲线下面积(AUC)评估患者测试集数据的胶质瘤分级效能.结果:SVM模型训练中HI子区域测试集AUC均>0.90.当肿瘤被划分为6个生境区域时,测试集效能指标的平均准确率为(92.74±2.88)%,平均灵敏度为(93.90±2.10)%,平均特异度为(90.36±4.59)%,平均F1-score为(95.24±0.66)%,对于预测胶质瘤高低分级效果良好.SVM模型可在三维空间中显示胶质瘤分级中的重要子区域.结论:基于HI的研究方法在胶质瘤分级中具有显著优势,能够有效地可视化和建模肿瘤异质性.
Objective:To develop a machine learning algorithm based on habitat imaging(HI),which can be used in the grading of gliomas by using multimodal magnetic resonance imaging(MRI),so as to construct the model of support vector machine(SVM)and the visualized heterogeneous regions of gliomas.Methods:A total of 335 glioma patients were collected from the 2019 brain tumor segmentation(BraTS)challenge competition of World Health Organization(WHO),which included 259 cases with high-grade gliomas(HGG)and 76 cases with low-grade gliomas(LGG).Subregions were divided based on HI technology.The PyRadiomics open-source package was used to extract the image features of region of interest(ROI),and to screen the features that stronger correlated with the high and low-grade gliomas.An SVM model was used to classify and predict the screened feature data.The heterogeneity of gliomas in images was analyzed through visualized characterization.The efficacy of glioma grading was assessed by using the area under curve(AUC)of the receiver operating characteristic(ROC)curve.Results:The AUC of test set exceeded 90%.The average accuracy of the performance indicators of test set was(92.74±2.88)%,and the average sensitivity was(93.90±2.10)%,and the average specificity was(90.36±4.59)%,and the average F1 score was(95.24±0.66)%when the tumors were divided into six habitat regions.The SVM model could showed important sub-regions in glioma grading in three-dimensional space.Conclusion:The study method based on HI has significant advantages in glioma grading,which can effectively realize visualized heterogeneity of tumor and construct model of the heterogeneity of tumor.

GliomaHeterogeneityRadiomicsMachine learningHabitat imaging

刘天赐、郑尧、徐桓、贺宇涛、冯跃飞、郝晓硕、刘洋

展开 >

空军军医大学军事生物医学工程学系军事医学信息技术教研室 西安 710032

中国人民解放军联勤保障部队药品仪器监督检验总站 北京 100071

胶质瘤 异质性 影像组学 机器学习 生境成像(HI)

国家自然科学基金面上项目

82472053

2024

中国医学装备
中国医学装备协会

中国医学装备

CSTPCD
影响因子:0.882
ISSN:1672-8270
年,卷(期):2024.21(10)
  • 3