首页|基于集成深度学习框架的新型冠状病毒感染治疗药物活性预测

基于集成深度学习框架的新型冠状病毒感染治疗药物活性预测

扫码查看
目的 建立预测新型冠状病毒感染治疗药物活性的集成深度学习框架。方法 采用卷积神经网络(CNN)和递归神经网络(RNN)从简化分子线性输入规范(SMILES)字符串序列信息中筛选出代表性的特征标识,以深度神经网络(DNN)从离散特征信息中提取更高级别的抽象特征,均以网格筛选法生成1个主框架模型和7个离散特征模型的最优结构,构成8种架构的127种可能组合。通过准确率(ACC)、F、召回率(Recall)、精确度(PRE)和马修斯相关系数(MCC)5 个标准指标评估模型的预测性能。建立和维护最终框架。结果 最终建立了 1 个以BiLSTM为集成深度学习框架的核心架构和 4个不同的离散特征模型组成的集成深度学习模型,训练集ACC为 72。84%,F为69。70,Recall为 72。21%,PRE为 68。03,MCC为 0。456 9;测试集中成功预测了 23 种可能对新型冠状病毒感染有治疗作用的药物。结论 集成深度学习框架相较于单个模型具有更强的预测能力,该研究为新型冠状病毒感染治疗药物的筛选提供了新的选择。
Prediction of Drug Activity for COVID-19 Based on Ensemble Deep Learning Framework
Objective To establish an ensemble deep learning framework for predicting the activity of drugs for Corona Virus Disease 2019(COVID-19).Methods Convolutional neural network(CNN)and recursive neural network(RNN)were used to screen the representative feature identifiers from the simplified molecular input line entry system(SMILES)sequence.Deep neural network(DNN)was used to extract higher-level abstract features from discrete feature information.The optimal structure of one main framework model and seven discrete feature models was generated by the grid search method,forming 127 possible combinations of eight architectures.The predictive performance of model was evaluated by the accuracy(ACC),F,Recall,precision(PRE)and Matthews correlation coefficient(MCC).The final framework was established and maintained.Results An ensemble deep learning model with BiLSTM as the core architecture and consisting of four different discrete feature models was ultimately established.The ACC of the training set was 72.84%,the F was 69.70,the Recall was 72.21%,the PRE was 68.03,and the MCC was 0.456 9.Twenty-three drugs that might be effective against COVID-19 were successfully predicted in the test set.Conclusion The ensemble deep learning framework has better predictive performance than a singular model,this study provides a new choice for the screening of the drugs for COVID-19.

ensemble deep learning frameworkCorona Virus Disease 2019drug activityneural networkautoBioSeqpy

许强、罗杰斯、杨明、张永林

展开 >

川北医学院附属医院,四川 南充 637000

西南医科大学,四川 泸州 646000

集成深度学习框架 新型冠状病毒感染 药物活性 神经网络 自动生物序列

西南特色中药资源国家重点实验室开放基金川北医学院校级科研发展计划项目

SKLTCM2022028CBY22-QNA38

2024

中国药业
重庆市食品药品监督管理局

中国药业

CSTPCD
影响因子:1.369
ISSN:1006-4931
年,卷(期):2024.33(14)
  • 38