首页|基于深度学习特征的MRI组学模型在以颅骨为基底脑膜瘤鉴别诊断中的应用

基于深度学习特征的MRI组学模型在以颅骨为基底脑膜瘤鉴别诊断中的应用

Application of MRI radiomics model based on deep learning features in differential diagnosis for skull-based menin-gioma

扫码查看
目的:探讨用深度学习特征构建的MRI组学模型在以颅骨为基底脑膜瘤鉴别诊断中的价值.方法:选择经手术病理证实并以颅骨为基底的208例脑膜瘤及MRI表现与之相似的153例非脑膜瘤数据构成队列1(361例);按相同标准,收集48例脑膜瘤和51例非脑膜瘤,以及从美国国家癌症影像档案的Meningioma-SEG-CLASS 数据集中筛选的30例脑膜瘤数据,构成队列2(129例).将所有肿瘤分为5类:孤立性纤维瘤/血管周细胞瘤(label_0)、脑膜瘤(label_1)、淋巴瘤(label_2)、转移瘤(label_3)、软骨来源及其他类似肿瘤(label_4),队列1按8∶2比例分为训练集和测试集,队列2为外部验证集.将在肿瘤最大层面裁剪后的T2WI图像和T1WI增强扫描图像输入ResNet50、DenseNet121、Inception v3进行训练,将不同模型的深度(迁移)学习特征融合后用于开发MRI组学模型,以多层感知机为分类器,评估模型的分类预测性能,并进行外部验证.结果:与卷积神经网络模型比较,用深度学习特征构建的MRI组学模型,显著改善了对以颅骨为基底肿瘤的分类预测性能,在外部验证集中的预测准确率为0.829.多分类ROC曲线显示,label_0、label_1、label_2、label_3、label_4的AUC分别为0.94、0.97、0.91、0.93、0.86.结论:基于深度学习特征开发的MRI组学模型,在以颅骨为基底脑膜瘤的鉴别诊断中具有较好的分类预测表现和泛化能力.
Objective:To explore the value of MRI radiomics model based on deep learning features in the differential diagnosis for skull-based meningioma.Methods:Cohort 1 comprised MRI data of 361 patients,including 208 patients with skull-based meningiomas and 153 patients with other skull-based tumors from one hospital.Cohort 2 comprised MRI data of 129 patients,including 48 patients with skull-based meningiomas and 51 patients with other skull-based tumors from another hospital and 30 patients with meningioma from the Meningioma-SEG-CLASS dataset in The Cancer Imaging Archive(TCIA).All tumors were classified into 5 categories,solitary fibrous tumors/hemanyiopericytomas(label_0),meningiomas(label_1),lymphomas(label_2),metastatic tumors(label_3),cartilage-derived and other similar tumors(label_4).Cohort 1 was divided into the training set(299 cases)and the test set(62 cases)at a ratio of 8:2,cohort 2 served as the external validation set.T2WI and enhanced T1WI images were cropped at the maximum level of tumors and input into convolution neural networks(ResNet50,DenseNet121,Inception v3)for training,the deep learning features extracted from networks were combined for developing MRI radiomics model.A multilayer perceptron(MLP)was selected as the classifier to evaluate the model's performance,and then proceeded with external validation.Results:Compared with convolution neural networks,MRI radiomics model based on deep learning features significantly improved the classification prediction performance of skull-based tumors.The predictive accuracy in the external validation set was 0.829.Multiclass ROC curve showed AUCs of label_0,label_1,label_2,label_3 and label_4 were 0.94,0.97,0.91,0.93 and 0.86,respectively.Conclusion:MRI radiomics model based on deep learning features has good performance and robust generalization capacity in distinguishing skull-based meningioma.

MeningiomaMagnetic resonance imagingDeep learningConvolutional neural networkDifferential diagnosis

刘婷、周玉梅、鲁忠燕、张勇、刘祥雏、蒋宇婷、蒋金泉

展开 >

四川省德阳市人民医院放射科,四川 德阳 618000

四川省德阳市人民医院门诊部,四川 德阳 618000

四川省绵竹市人民医院放射科,四川 绵竹 618200

脑膜瘤 磁共振成像 深度学习 卷积神经网络 鉴别诊断

德阳市科技局科技创新项目

2021SZZ079

2024

中国中西医结合影像学杂志
中国中西医结合学会,山东中医药大学附属医院

中国中西医结合影像学杂志

CSTPCD
影响因子:0.857
ISSN:1672-0512
年,卷(期):2024.22(5)