首页|改建房结构安全的三阶提升预警模型

改建房结构安全的三阶提升预警模型

扫码查看
为研究改建房结构安全问题并提升模型预警精度,采用"文本-图像融合"、"信息再生成"和"智能优化模型参数"3 个方法建立三阶提升预警模型.首先构建基础预警模型:选取VGG16、ResNet50 等4 种图像识别模型进行迁移学习,将性能最优者作为基础预警模型;之后进行第1 次预警精度提升:收集测试集中对应的文本信息,经独热编码等预处理后与图像信息"融合",优选随机森林等5 种算法以提升预警精度;然后进行第2 次精度提升:采用过采样-深度卷积生成对抗网络(SMOTE-DCGAN)策略提高模型对隐患改建房的"捕捉"能力;最后,使用金豺优化算法进行第3 次提升.研究结果表明:DenseNet121 模型更能抓取到隐患改建房图像特征;改建房结构安全预警模型最优的是支持向量机(SVM),准确率为82.5%;使用SMOTE-DCGAN策略后,表现最佳的SVM和XGBoost,其隐患改建房的召回率分别提升 10 和 5 个百分点;金豺优化算法下的"SMOTE-DCGAN-SVM"准确率、召回率、精确率和F1 值再次提升7.0、7.5、10.5 和9.1 个百分点.研究结果可为相关部门排查改建房安全隐患提供技术支持.
Three-order improvement early-warning model for structural safety of reconstructed houses
In order to study the structural safety problem of reconstructed houses and improve the early-warning accuracy of the model,three methods of"text-image fusion","information regeneration"and"intelligent optimization model parameters"were used to establish a three-order improvement early-warning model.Firstly,the basic early-warning model was constructed,then four image recognition models such as VGG16 and ResNet50 were selected for transfer learning,and the model with the best performance was used as the basic early-warning model.After that,the first early-warning accuracy improvement was car-ried out.The text information corresponding to the test set was collected,pre-processed by one-hot coding and"fused"with image information,and five machine learning algorithms such as random forest were selected to improve the early-warning ac-curacy.Then,the second accuracy improvement was carried out.The"oversampling-deep convolutional generative adversarial network"strategy was used to improve the"capture"ability of the model to the reconstructed houses with potential safety hazard.Finally,the golden jackal optimization algorithm was used for the third improvement.The results show that the DenseNet121 model can better capture the image features of the reconstructed houses with potential safety hazard.The optimal early-warning model for the structural safety of reconstructed houses is SVM,with the accuracy of 82.5%.After using the"oversampling-deep convolutional generative adversarial network"strategy,the SVM and XGBoost with the best performance increase the recall rate of the reconstructed houses with potential safety hazard by 10 and 5 percentage points,respectively.The overall accuracy,recall rate,precision rate and F1 value of"SMOTE-DCGAN-SVM"under the golden jackal optimi-zation algorithm increase by 7.0,7.5,10.5 and 9.1 percentage points.The research results can provide a reference for the relevant departments to infer the reconstructed houses that may have structural safety hazards in advance when conducting the census of dangerous houses.

reconstructed housesdeep learningintegrated algorithmgenerative adversarial networksgolden jackal opti-mization algorithm

段在鹏、李炯、杨泽鸿、黄豪琪

展开 >

福州大学 经济与管理学院,福建 福州 350108

福建省应急管理研究中心,福建 福州 350108

福州大学 环境与安全工程学院,福建 福州 350108

改建房 深度学习 集成算法 生成式对抗网络 金豺优化算法

国家社会科学基金

23BGL290

2024

中国安全生产科学技术
中国安全生产科学研究院

中国安全生产科学技术

CSTPCD北大核心
影响因子:1.119
ISSN:1673-193X
年,卷(期):2024.20(2)
  • 17