首页|基于贝叶斯网络和耦合度模型的城市暴雨内涝风险影响机制研究

基于贝叶斯网络和耦合度模型的城市暴雨内涝风险影响机制研究

扫码查看
为研究城市内涝事故致灾因素之间的关联性以及系统展示多因素对整个灾变过程的影响,运用贝叶斯网络和耦合度模型对暴雨灾害链的演化关键参数进行表征,分析单因素或多因素耦合对暴雨内涝的影响.研究结果表明:单因素分析时,环境因素是造成城市内涝的主要原因(80%),其次是城市硬件系统(78%);双因素分析得出城市硬件系统-环境耦合下城市内涝发生概率最大(82%);采用三因素分析得出城市硬件-环境-管理三者耦合后最易导致城市内涝(83%).随后,以北京"23·7"特大暴雨灾害为例,得出模型评估结果与实际情况具有较好的相符性,并提出相应的预防措施.研究结果对未来城市内涝灾害防控具有指导意义.
Study on influence mechanism of urban rainstorm waterlogging risk based on Bayesian network and coupling degree model
In order to study the correlation between the disaster-causing factors of urban waterlogging accidents and systemati-cally present the influence of multiple factors on the whole catastrophic process,the Bayesian network and coupling degree model were used to characterize the key parameters of the evolution of rainstorm disaster chain,and the influence of single factor or multiple factors coupling on rainstorm waterlogging was analyzed.The results show that in the single factor analysis,the environmental factors are the main cause of urban waterlogging(80%),followed by urban hardware system(78%).In the double factors analysis,the probability of urban waterlogging is the highest under the coupling of urban hardware system and environment(82%).Further more,in the three factors analysis,the coupling of urban hardware system,environment and management is the most likely to cause urban waterlogging(83%).Subsequently,taking the"23·7"heavy rainstorm disas-ter in Beijing as an example,it is concluded that the model evaluation results are in good agreement with the actual situation.Finally,the corresponding preventive measures are proposed.The research results have guiding significance for the prevention and control of urban waterlogging disasters in the future.

rainstorm waterloggingBayesianindex systemfactor analysiscase validation

陶若祎、崔华莹、李浩源、王健、王亚飞、赵金龙

展开 >

中国矿业大学(北京)应急管理与安全工程学院,北京 100083

北京市科学技术研究院 城市系统工程研究所,北京 100089

暴雨内涝 贝叶斯 指标体系 因素分析 案例验证

北京市科学技术研究院萌芽计划北京市科学技术研究院创新培育项目

BGS20221223CB087

2024

中国安全生产科学技术
中国安全生产科学研究院

中国安全生产科学技术

CSTPCD北大核心
影响因子:1.119
ISSN:1673-193X
年,卷(期):2024.20(3)
  • 23