首页|基于KPCA-BiLSTM-iForest的瓦斯体积分数异常智能识别方法

基于KPCA-BiLSTM-iForest的瓦斯体积分数异常智能识别方法

扫码查看
为了实现瓦斯体积分数异常在线精准超前识别,提出1种基于多元异构数据融合的瓦斯体积分数异常识别方法(KPCA-BiLSTM-iForest),该方法采用核主成分分析(KPCA)对非线性数据进行降维和特征提取,提取主要信息并减少计算量,并采用双向长短期记忆神经网络(BiLSTM)对降维后的数据进行瓦斯体积分数预测,利用隔离森林(iForest)根据预测结果及实际值相关数据进行异常检测.研究结果表明:该方法能够提前20 min检测到瓦斯体积分数异常,且异常识别准确率较KPCA-LSTM-iF-orest 方法,KPCA-iForest方法和KPCA-BiLSTM-LOF方法可以提升3个百分点以上.研究结果可为识别瓦斯体积分数异常并提出预警提供依据.
Intelligent identification method for anomaly of gas volume fraction based on KPCA-BiLSTM-iForest
To achieve the online precise and advanced identification of abnormal gas volume fraction,an anomaly identifica-tion method of gas volume fraction based on multivariate heterogeneous data fusion(KPCA-BiLSTM-iForest)was pro-posed.The kernel principal component analysis(KPCA)was applied for dimensionality reduction and feature extraction of nonlinear data,then the main information was extracted,and the computation amount was reduced.The prediction of gas vol-ume fraction was conducted on the reduced-dimension data by using the bidirectional long short-term memory neural network(BiLSTM),and the anomaly detection was carried out according to the prediction results and actual values by using the isola-tion forest(iForest).The results show that this method can detect the gas volume fraction anomaly 20 minutes in advance,and the accuracy of anomaly identification can be improved by more than 3 percentage points compared with the KPCA-LSTM-iForest method,the KPCA-iForest method and the KPCA-BiLSTM-LOF method.The results of the study can pro-vide a basis for identifying gas volume fraction anomalies and providing early warnings.

coal mine gasintelligent anomalyonline monitoring dataKPCA-BiLSTM-iForest modelengineering in-version

姜思嘉、盛武

展开 >

安徽理工大学经济与管理学院,安徽淮南 232001

煤矿瓦斯 异常智能识别 在线监测数据 KPCA-BiLSTM-iForest模型 工程反演

国家自然科学基金安徽省高等学校研究生科研项目

71971003YJS20210411

2024

中国安全生产科学技术
中国安全生产科学研究院

中国安全生产科学技术

CSTPCD北大核心
影响因子:1.119
ISSN:1673-193X
年,卷(期):2024.20(4)
  • 25