首页|基于深度学习模型的煤矿安全隐患数据主题挖掘

基于深度学习模型的煤矿安全隐患数据主题挖掘

扫码查看
为了提高煤矿安全风险排查能力和监督能力,提出1种基于双向长短期记忆网络(BiLSTM)、条件随机场(CRF)和隐含狄利克雷分布(LDA)的模型.训练BiLSTM-CRF模型分词,采用困惑度-主题方差(perplexity-var)计算LDA模型最优主题数,构建BiLSTM-CRF-LDA模型挖掘内蒙古某煤矿安全隐患数据.研究结果表明:困惑度-主题方差指标能更准确地确定主题数;BiLSTM-CRF模型分词结果比jieba库更准确;BiLSTM-CRF-LDA模型能准确地挖掘出煤矿安全隐患类型、安全隐患空间分布和安全责任划分.研究结果可为煤矿安全风险排查与监督提供参考.
Topics mining on potential safety hazard data of coal mine based on deep learning models
To enhance coal mine safety risk identification and supervision capabilities,a model based on Bidirectional Long Short-Term Memory Networks(BiLSTM),Conditional Random Fields(CRF),and Latent Dirichlet Allocation(LDA)is proposed.The BiLSTM-CRF model is trained to split words;the perplexity-var is used to calculate the optimal number of topics for the LDA model;and the BiLSTM-CRF-LDA model is constructed to mine the data of safety hazards in a coal mine in Inner Mongolia.The research findings indicate that the perplexity-variance metric can more accurately determine the number of topics;the word segmentation results of the BiLSTM-CRF model are more precise compared to those of the jieba library;the BiLSTM-CRF-LDA model can accurately identify types of safety hazards,spatial distribution of safety hazards,and the allocation of safety responsibilities in coal mines.These results can provide a reference for coal mine safety risk exam-ination and supervision.

potential safety hazard data of coal minebi-directional long short-term memory(BiLSTM)conditional random field(CRF)latent Dirichlet allocation(LDA)perplexity-topic variance

肖琪耀、贾宝山、徐以诺、张茂薇、梁明辉

展开 >

辽宁工程技术大学矿业学院,辽宁阜新 123000

煤矿火灾及瓦斯防控国家矿山安全监察局重点实验室,辽宁抚顺 113000

辽宁工程技术大学安全科学与工程学院,辽宁阜新 123000

煤矿安全隐患 BiLSTM CRF LDA 困惑度-主题方差

2024

中国安全生产科学技术
中国安全生产科学研究院

中国安全生产科学技术

CSTPCD北大核心
影响因子:1.119
ISSN:1673-193X
年,卷(期):2024.20(4)
  • 17