首页|基于深度学习模型的煤矿安全隐患数据主题挖掘

基于深度学习模型的煤矿安全隐患数据主题挖掘

Topics mining on potential safety hazard data of coal mine based on deep learning models

扫码查看
为了提高煤矿安全风险排查能力和监督能力,提出1种基于双向长短期记忆网络(BiLSTM)、条件随机场(CRF)和隐含狄利克雷分布(LDA)的模型.训练BiLSTM-CRF模型分词,采用困惑度-主题方差(perplexity-var)计算LDA模型最优主题数,构建BiLSTM-CRF-LDA模型挖掘内蒙古某煤矿安全隐患数据.研究结果表明:困惑度-主题方差指标能更准确地确定主题数;BiLSTM-CRF模型分词结果比jieba库更准确;BiLSTM-CRF-LDA模型能准确地挖掘出煤矿安全隐患类型、安全隐患空间分布和安全责任划分.研究结果可为煤矿安全风险排查与监督提供参考.
To enhance coal mine safety risk identification and supervision capabilities,a model based on Bidirectional Long Short-Term Memory Networks(BiLSTM),Conditional Random Fields(CRF),and Latent Dirichlet Allocation(LDA)is proposed.The BiLSTM-CRF model is trained to split words;the perplexity-var is used to calculate the optimal number of topics for the LDA model;and the BiLSTM-CRF-LDA model is constructed to mine the data of safety hazards in a coal mine in Inner Mongolia.The research findings indicate that the perplexity-variance metric can more accurately determine the number of topics;the word segmentation results of the BiLSTM-CRF model are more precise compared to those of the jieba library;the BiLSTM-CRF-LDA model can accurately identify types of safety hazards,spatial distribution of safety hazards,and the allocation of safety responsibilities in coal mines.These results can provide a reference for coal mine safety risk exam-ination and supervision.

potential safety hazard data of coal minebi-directional long short-term memory(BiLSTM)conditional random field(CRF)latent Dirichlet allocation(LDA)perplexity-topic variance

肖琪耀、贾宝山、徐以诺、张茂薇、梁明辉

展开 >

辽宁工程技术大学矿业学院,辽宁阜新 123000

煤矿火灾及瓦斯防控国家矿山安全监察局重点实验室,辽宁抚顺 113000

辽宁工程技术大学安全科学与工程学院,辽宁阜新 123000

煤矿安全隐患 BiLSTM CRF LDA 困惑度-主题方差

2024

中国安全生产科学技术
中国安全生产科学研究院

中国安全生产科学技术

CSTPCD北大核心
影响因子:1.119
ISSN:1673-193X
年,卷(期):2024.20(4)
  • 17