首页|基于网格优化双层随机森林的采空区煤氧化升温预测研究

基于网格优化双层随机森林的采空区煤氧化升温预测研究

扫码查看
为了对采空区煤氧化升温的温度进行预测,在内蒙古某煤矿16402综放工作面进行长期的采空区气体和温度观测实验,采集到准确的采空区煤氧化升温过程中气体及温度数据,提出1种基于网格优化双层随机森林(WG-DRF)的采空区煤氧化升温预测方法,用该方法构建预测模型并与传统随机森林、BP神经网络和支持向量回归模型的预测结果进行对比.研究结果表明:WG-DRF模型预测的平均绝对误差MAE,均方误差MSE,决定系数R2分别为1.725,6.158,0.903,优于其他模型.通过更换数据集对WG-DRF方法进行测试,验证双层随机森林模型具有较强的泛化性.研究结果可为采空区煤氧化升温的温度预测提供参考.
Prediction of coal oxidation temperature rise in goaf based on grid optimization double-layer random forest
In order to predict the temperature of coal oxidation temperature rise in goaf,a long-term observation experiment of goaf gas and temperature was carried out on the 16402 fully mechanized caving face of a coal mine in Inner Mongolia to col-lect accurate gas and temperature data during the process of coal oxidation heating in goaf.A method for predicting the coal oxidation temperature rise in goaf based on the grid optimization double-layer random forest(WG-DRF)was proposed.The prediction model was constructed by this method and compared with the prediction results of traditional random forest,BP neural network and support vector regression model.The results show that the mean absolute error MAE,mean square error MSE and coefficient of determination R2 of WG-DRF model are 1.725,6.158 and 0.903,respectively,which are better than the other models.The WG-DRF method is tested by changing the data set,and it verified that the double-layer random forest model has strong generalization.The research results can provide reference for the temperature prediction of coal oxidation temperature rise in goaf.

goafcoal oxidation temperature risetemperature predictiongrid optimization double-layer random forest

张春、隋彦臣

展开 >

辽宁工程技术大学安全科学与工程学院,辽宁阜新 123000

辽宁工程技术大学矿山热动力灾害与防治教育部重点实验室,辽宁葫芦岛 125105

采空区 煤氧化升温 温度预测 网格优化双层随机森林

国家自然科学基金国家自然科学基金

5217418351774170

2024

中国安全生产科学技术
中国安全生产科学研究院

中国安全生产科学技术

CSTPCD北大核心
影响因子:1.119
ISSN:1673-193X
年,卷(期):2024.20(5)