首页|基于深度学习的特征增强式安全事故文本实体识别模型研究

基于深度学习的特征增强式安全事故文本实体识别模型研究

扫码查看
为了研究安全事故案例报告中上下文语义指代和复杂领域内容对机器自动识别与抽取信息的性能影响,通过考虑局部特征增强构建了 BERT+Multi-CNN+BiGRU+CRF(BMulCBC)模型.BERT负责将非结构化文本转化输入,Multi-CNN和BiGRU负责向量局部特征与序列特征编码,CRF则负责完成准确的实体标签解码.研究结果表明:模型实体识别的精确率、召回率和F1值分别为65.94%,74.02%,69.75%,在精确率和F1值上皆优于同类对比模型.研究结果可为安全事故事理图谱推理提供理论支持.
Research on feature-enhanced model for entity recognition of safety accident text based on deep learning
In order to study the influence of context semantic reference and complex domain content in the safety accident case reports on the performance of machine automatic recognition andinformation extraction,a BERT+Multi-CNN+BiGRU+CRF(BMulCBC)model considering the local feature enhancement was constructed.BERT was responsible for transforming the unstructured text into input,Multi-CNN and BiGRUwere responsible for encoding the vector local features and sequence features,and CRF was responsible for accuratelydecoding the entity labels.The results show that the precision rate,recall rate and Fl value of entity recognition of the model are 65.94%,74.02%and 69.75%,respectively,andthe precision rate and Fl value of the model are better than those of the similar comparison models.The research results can provide theoretical sup-port for the reasoning of the downstream safety accident event graph.

safety accidentcase reportnamed entity recognitiondeep learninglocal feature enhancement

成全、张双宝

展开 >

福州大学 经济与管理学院,福建福州 350116

安全事故 案例报告 命名实体识别 深度学习 局部特征增强

国家社会科学基金项目

19BTQ072

2024

中国安全生产科学技术
中国安全生产科学研究院

中国安全生产科学技术

CSTPCD北大核心
影响因子:1.119
ISSN:1673-193X
年,卷(期):2024.20(6)