首页|基于K-means SMOTE和IDBO-RF岩爆烈度等级预测模型

基于K-means SMOTE和IDBO-RF岩爆烈度等级预测模型

Prediction model of rockburst intensity levels based on K-means SMOTE and IDBO-RF

扫码查看
为解决岩爆数据集不均衡和模型参数寻优困难等问题,提出1种基于K-means SMOTE与改进蜣螂算法优化随机森林(random forest,RF)的预测模型.首先,分析岩爆发生机理构建指标体系;其次,使用K-means SMOTE算法对岩爆数据集进行均衡化处理,采用Robust标准化消除量纲;最后,引入Tent混沌映射和非线性递减策略组合改进蜣螂优化(improved dung beetle op-timizer,IDBO)算法,寻优RF超参数,建立岩爆烈度等级预测模型(IDBO-RF)并与其他模型对比验证其有效性.研究结果表明:数据均衡处理后,各模型准确率提高10.85%~16.02%;设计的IDBO-RF预测模型平均准确率约为94.37%,较RF、GWO-RF、DBO-RF模型分别提高约7.76百分点、1.69百分点、1.11百分点;IDBO-RF预测模型准确率最高约为96.43%,优于RF、GWO-RF、DBO-RF模型.研究结果可为解决岩爆预测问题提供一定参考.
To address the issues of imbalanced rockburst datasets and the challenges in optimizing model parameters,a pre-dictive model based on K-means SMOTE and an improved dung beetle optimizer(IDBO)algorithm for optimizing random forest(RF)is proposed.Initially,the mechanism of rockburst occurrence is analyzed to construct an indicator system.Subse-quently,the K-means SMOTE algorithm is employed to balance the rockburst dataset,and Robust Standardization is used to eliminate dimensionality.Finally,the Tent chaotic map and a nonlinear decreasing strategy are incorporated to improve the dung beetle optimizer algorithm for optimizing RF hyperparameters,resulting in the establishment of a rockburst intensity pre-diction model(IDBO-RF).The model's effectiveness is verified through comparison with other models.The research find-ings indicate that,following data balancing,the accuracy of various models improves by 10.85%to 16.02%.The designed IDBO-RF prediction model achieves an average accuracy of approximately 94.37%,which is an improvement of about 7.76 percentage point,1.69 percentage point,and 1.11 percentage point over the RF,GWO-RF,and DBO-RF models,respec-tively.The IDBO-RF prediction model attains the highest accuracy of approximately 96.43%,outperforming the RF,GWO-RF,and DBO-RF models.These results can provide reference for solving the problem of rockburst prediction.

data balancingimproved dung beetle optimizer(IDBO)random forestrockburst intensity levelpre-diction model

温廷新、王泽锋

展开 >

辽宁工程技术大学工商管理学院,辽宁葫芦岛 125100

辽宁工程技术大学鄂尔多斯研究院,内蒙古鄂尔多斯 017000

数据均衡 改进蜣螂优化(IDBO) 随机森林 岩爆烈度等级 预测模型

国家自然科学基金项目辽宁省社会科学规划基金项目

71371091L14BTJ004

2024

中国安全生产科学技术
中国安全生产科学研究院

中国安全生产科学技术

CSTPCD北大核心
影响因子:1.119
ISSN:1673-193X
年,卷(期):2024.20(6)