首页|基于GA-BP神经网络边坡稳定性预测的方法及应用

基于GA-BP神经网络边坡稳定性预测的方法及应用

扫码查看
为更有效预测边坡安全系数,以边坡的6个主要特征(重度γ、黏聚力c、内摩擦角φ、边坡角a、边坡高度H和孔隙水压力ru)参数为研究基础,构建基于遗传算法优化BP神经网络的边坡稳定性预测模型.首先,收集205组边坡案例建立样本数据集,采用分布小提琴图和皮尔逊相关性分析系数检验矩阵进行特征参数分布特征与相关性的可视化分析;然后,采用构建的预测模型进行训练和测试;最后,对测试结果进行验证.研究结果表明:各特征参数的小提琴图分布相类似,特征参数之间相关性不显著,样本数据集较为合理;GA-BP与BP神经网络预测结果整体上均接近真实值,而采用遗传算法优化后的模型在预测方面具有更好的准确度和稳度.研究结果可为边坡稳定性状态判断提供一定参考.
Method and application of slope stability prediction based on GA-BP neural network
In order to more effectively predict the safety factor of slopes,a slope stability prediction model based on genetic algorithm optimized BP neural network is constructed based on the six main characteristics of slopes(weight γ,cohesion c,in-ternal friction angle φ,slope angle a,slope height H,and pore water pressure ru).Firstly,205 sets of slope cases were collect-ed to establish a sample dataset.The distribution violin plot and Pearson correlation analysis coefficient test matrix were used to visualize the distribution characteristics and correlation of characteristic parameters;Then,use the constructed prediction model for training and testing;Finally,validate the test results.The research results indicate that the violin plot distribution of each feature parameter is similar,and the correlation between feature parameters is not significant.The sample dataset is rela-tively reasonable;The prediction results of GA-BP and BP neural networks are generally close to the true values,while the model optimized by genetic algorithm has better accuracy and stability in prediction.The research results can provide certain reference for the judgment of slope stability status.

genetic algorithmBP neural networkvisualization analysisslope stability

王发刚、邹平、王忠康、戴勇、肖祖荣、刘正宇

展开 >

低品位难处理黄金资源综合利用国家重点实验室,福建上杭 364204

紫金矿业集团股份有限公司,福建上杭 364200

紫金(长沙)工程技术有限公司,湖南长沙 410017

遗传算法 BP神经网络 可视化分析 边坡稳定性

国家重点研发计划项目

2022YFC2903904

2024

中国安全生产科学技术
中国安全生产科学研究院

中国安全生产科学技术

CSTPCD北大核心
影响因子:1.119
ISSN:1673-193X
年,卷(期):2024.20(6)