首页|基于注意力机制的安全帽佩戴状态检测模型

基于注意力机制的安全帽佩戴状态检测模型

扫码查看
为缓解安全生产视频监控场景下物体尺寸小、背景复杂、遮挡容易导致的安全帽佩戴状态漏检、误检、定位不准等问题,提出1 种基于注意力机制的2 阶段高精度安全帽佩戴状态检测模型.提出双向多层连接融合的特征金字塔网络,并设计基于编解码的空间注意力机制去除冗余特征,提升小尺寸目标的召回率;采用多尺度卷积提取候选区域多层上下文特征,并利用注意力机制对不同层级、不同尺度的上下文特征进行显式加权,进而提高模型在复杂背景下的鲁棒性;解耦候选区域分类和定位网络,分别引入通道注意力和空间注意力提升模型分类和定位精度.研究结果表明:基于注意力机制的安全帽佩戴状态检测模型整体上优于当前相对主流的高精度检测框架,如YOLOv3、SSD、RetinaNet、Faster R-CNN、TridentNet模型.研究结果可有效缓解安全生产视频监控场景下安全帽佩戴状态的漏检、误检和定位不准等问题.
Detection model for wearing status of safety helmet based on attention mechanism
To alleviate the problems of missing detection,false detection,and inaccurate localization on wearing status of safe-ty helmet in the scenario of work safety video surveillance due to small object size,complex background,and occlusion,a two-stage high-precision detection model for the wearing status of safety helmet based on the attention mechanism was proposed.A feature pyramid network with bidirectional multi-layer connected fusion was proposed,and the spatial attention mechanism based on encoder-decoder was designed to remove the redundant features,thereby enhancing the recall rate of small objects.The multi-scale convolution was used to extract the multi-layer context features of candidate region,and the attention mecha-nism was employed to explicitly weight the context features with different levels and different scales,thereby improving the ro-bustness of the model in complex background.The classification and localization networks of candidate region were decou-pled,and the channel attention and spatial attention were respectively introduced to enhance the classification and localization accuracy of the model.The research results indicate that the helmet wearing status detection model based on attention mecha-nisms is overall superior to the current related mainstream high-precision detection models such as YOLOv3、SSD、RetinaNet、Faster R-CNN and TridentNet.The research results can effectively mitigate the issues of missing detection,false detection,and inaccurate localization on the wearing status of safety helmet in the work safety video surveillance scenarios.

work safetydetection on wearing status of safety helmetobject detectionattention mechanismfeature pyra-mid

韩飞腾、刘永强、房玉东、冯涛、郭玮、薛明、姬玉成

展开 >

应急管理部大数据中心,北京 100013

清华大学 自动化系,北京 100084

安全生产 安全帽佩戴状态检测 目标检测 注意力机制 特征金字塔

国家重点研发计划项目

2021YFC3001304

2024

中国安全生产科学技术
中国安全生产科学研究院

中国安全生产科学技术

CSTPCD北大核心
影响因子:1.119
ISSN:1673-193X
年,卷(期):2024.20(8)
  • 4