首页|基于AOA-XGBOOST模型的管道缺陷漏磁信号量化研究

基于AOA-XGBOOST模型的管道缺陷漏磁信号量化研究

扫码查看
为提升管道漏磁检测管道缺陷深度的量化精度,对长输管道外腐蚀状态进行准确把控,搭建管道漏磁信号采集实验平台,开展管道漏磁内检测牵拉实验,提取120组管道内外部缺陷的三轴漏磁信号.建立基于AOA-XGBOOST的管道漏磁检测缺陷深度预测模型,使用BPNN、SVR、XGBOOST模型作为对照组进行验证计算.研究结果表明:AOA-XGBOOST模型对漏磁内检测信号量化精度具有更好的准确性和优越性,可解决漏磁内检测信号的管道缺陷深度量化难题,有效提升管体状态检测精度.研究结果可为管道漏磁检测信号的智能分析提供技术参考.
Research on quantification of magnetic flux leakage signals of pipeline defect based on AOA-XGBOOST Model
To enhance the quantitative accuracy of pipeline magnetic flux leakage (MFL) detection for pipeline defect depth and precisely control the external corrosion state of long-distance pipelines,an experimental platform of pipeline MFL signal acquisition was constructed. The pipeline MFL internal detection pulling experiments were conducted,and 120 groups of triax-ial MFL signals of internal and external pipeline defects were extracted. A prediction model on the defect depth of pipeline MFL detection based on AOA-XGBOOST was established,and BPNN,SVR,and XGBOOST models were used as the control group for verification calculation. The results show that the AOA-XGBOOST model exhibits better accuracy and superiority for the quantification accuracy of the internal MFL detection signal,which can resolve the quantification issue of internal MFL de-tection signal forthe pipeline defect depth,and effectively enhance the detection accuracy of pipeline state. The research re-sults can provide technical reference for the intelligent analysis of pipeline MFL detection signals.

oil and gas pipelinemagnetic flux leakage detectiondefect depth quantificationmachine learning

徐鲁帅、董绍华、陈思雅、魏昊天、孙伟栋、郭永

展开 >

中国石油大学(北京) 人工智能学院,北京 102249

应急管理部油气生产安全与应急技术重点实验室,北京 102249

中国石油大学(北京) 安全与海洋工程学院,北京 102249

国家石油天然气管网集团有限公司华南分公司,广东广州 510655

管网集团(徐州)管道检验检测有限公司,江苏徐州 221008

国家管网集团西部管道有限责任公司塔里木输油气分公司,新疆库尔勒 841000

展开 >

油气管道 漏磁检测 缺陷深度量化 机器学习

2024

中国安全生产科学技术
中国安全生产科学研究院

中国安全生产科学技术

CSTPCD北大核心
影响因子:1.119
ISSN:1673-193X
年,卷(期):2024.20(12)