首页|样本数据重复性对NIR校正模型的影响

样本数据重复性对NIR校正模型的影响

扫码查看
目的:探讨样本数据重复采集对所构建近红外(NIR)定量校正模型稳健性的影响.初步阐释该影响产生的原因.方法:以银黄液为研究载体,采集样本的近红外光谱,并以高效液相测定值为参考值,采用偏最小二乘算法建立黄芩苷定量校正模型,对潜变量因子累积贡献曲线进行深人探讨,在潜变量空间阐述重复采样对所建立的定量校正模型的影响.结果:在对重复采集光谱平均后,以最优光谱预处理疗法建立的定量预测模型达到理想预测结果( RMSECV=1.824).该模型潜变量因子累计贡献率曲线下的面积,明显大于其他光谱建模方式,即所得的模型更加稳健.结论:多次测量取平均能够显著提高模型的预测性能,使所得的模型更加稳健.
Impact of sample data repeatability on NIR calibration model
Objective: To investigate the impact of repeated data acquisition on the stability of NIR quantitative calibration model, and make a preliminary analysis on reasons for the impact. Method: Yinhuang decoction was used as the subject, and x\IR spectrum samples were collected. By reference to HPLC's determination value, the baicalin quantitative calibration model was established by using recursive least square algorithm to detect cumulative-LVs curve of latent variables. The impact of calibration model caused by repetitive samples was explained in latent variance space. Result: After averaging the repetitive spectrum samples, quantitative prediction model, which was built by optimal method of spectrum pretreatment, showed the ideal prediction result (RMSECV = 1. 824). The area under the cumulative-LVs curve of latent variables was obviously larger than other modeling methods, i. e. , this model is more stable. Conclusion: Averaging of multiple measurements can dramatically improve the predictive ability of the model and make the model more stable.

near-infrared spectroscopy (NIRs)partial least square (PLS)repetitive samples

隋丞琳、吴志生、林兆洲、徐冰、杜敏、史新元、乔延江

展开 >

北京中医药大学中药信息工程研究中心,北京100102

近红外光谱 偏最小二乘法 重复性样本

国家“重大新药创制”科技重大专项北京市支持中央在京高校共建项目

2010ZX09502-002

2012

中国中药杂志
中国药学会

中国中药杂志

CSTPCDCSCD北大核心
影响因子:1.718
ISSN:1001-5302
年,卷(期):2012.37(12)
  • 1
  • 1