This study aims to optimize the prediction model of personalized water pills that has been established by our research group.Dioscoreae Rhizoma,Leonuri Herba,Codonopsis Radix,Armeniacae Semen Amarum,and calcined Oyster were selected as model medicines of powdery,fibrous,sugary,oily,and brittle materials,respectively.The model prescriptions were obtained by uniform mixing design.With hydroxypropyl methylcellulose E5(HPMC-E5)aqueous solution as the adhesive,personalized water pills were prepared by extrusion and spheronizaition.The evaluation indexes in the pill preparation process and the multi-model statistical analysis were employed to optimize and evaluate the prediction model of personalized water pills.The prediction equation of the adhesive concentration was obtained as follows:Y1=-4.172+3.63XA+15.057XB+1.838XC-0.997XD(adhesive concentration of 10%when Y1<0,and 20%whenY1>0).The overall accuracy of the prediction model for adhesive concentration was 96.0%.The prediction equation of adhesive dosage was Y2=6.051+94.944XA1.5+161.977XB+70.078XC2+12.016XD0.3+27.493XE0.3-2.168XF-1(R2=0.954,P<0.001).Furthermore,the semantic prediction model for material classification of traditional Chinese medicines was used to classify the materials contained in the prescription,and thus the prediction model of personalized water pills was evaluated.The results showed that the prescriptions for model evaluation can be prepared with one-time molding,and the forming quality was better than that established by the research group earlier.This study has achieved the optimization of the prediction model of personalized water pills.
关键词
临方水丸/预测模型/语义分析/中药物料分类
Key words
personalized water pills/prediction model/semantic analysis/material classification of traditional Chinese medicines