首页|基于机器学习的中药制剂快速无损检测技术研究进展

基于机器学习的中药制剂快速无损检测技术研究进展

扫码查看
近年来,随着社会对药品质量和安全关注的不断提升,药品质量问题已成为制药行业面临的重大挑战,直接影响消费者的健康和市场信任。通过将多光谱成像技术与机器学习相结合,可以实现对中药制剂的快速、无损、精准检测,从而革新传统检测方法,并开发出更便捷和自动化的解决方案。该文全面综述了基于机器学习算法的快速无损检测技术在中药制剂领域的应用现状,分析了常用快速无损检测技术的优点及原理,为该技术在中药制剂领域的应用与推广提供了参考。同时,探讨了各种数据预处理技术、操作流程及机器学习算法,以提升数据利用效率。重点分析了机器学习在中药制剂检测中的挑战,并提出相应建议,为未来将机器学习与快速无损检测技术结合应用于实际生产提供指导。
Rapid non-destructive detection technology for traditional Chinese medicine preparations based on machine learning:a review
In recent years,with the increasing societal focus on drug quality and safety,quality issues have become a major challenge faced by the pharmaceutical industry,directly impacting consumer health and market trust.By combining multispectral imaging technology with machine learning,it is possible to achieve rapid,non-destructive,and precise detection of traditional Chinese medicine(TCM) preparations,thereby revolutionizing traditional detection methods and developing more convenient and automated solutions.This paper provides a comprehensive review of the current applications of rapid,non-destructive detection techniques based on machine learning algorithms in the field of TCM preparations.It analyzed the principles and advantages of commonly used rapid,non-destructive detection techniques,offering a reference for the application and promotion of these technologies in TCM preparation detection.Additionally,this paper explored various data preprocessing techniques,operational processes,and machine learning algorithms to enhance data utilization efficiency.Finally,it focused on the challenges of applying machine learning in TCM preparation detection and offered corresponding recommendations,providing guidance for the future integration of machine learning with rapid,non-destructive detection techniques in practical production.

traditional Chinese medicine preparationsmachine learningrapid non-destructive detection technologyhyperspectral imaging technologyterahertz time-domain spectroscopy

万鑫浩、陶青、王子千、杨东印、钟志坚、罗小荣、杨明、王学成、伍振峰

展开 >

江西中医药大学,现代中药制剂教育部重点实验室,江西南昌 330004

江西中医药大学,江西南昌 330004

江西省药品检查员中心,江西南昌 330000

江中药业股份有限公司,江西南昌 330096

经典名方现代中药创制全国重点实验室,江西南昌 330004

展开 >

中药制剂 机器学习算法 快速无损检测技术 高光谱成像技术 太赫兹时域光谱

2024

中国中药杂志
中国药学会

中国中药杂志

CSTPCD北大核心
影响因子:1.718
ISSN:1001-5302
年,卷(期):2024.49(24)