首页|基于多序列MRI的多区域影像组学评分预测血管包绕肿瘤细胞簇和/或微血管侵犯阳性肝细胞癌

基于多序列MRI的多区域影像组学评分预测血管包绕肿瘤细胞簇和/或微血管侵犯阳性肝细胞癌

Multiregional radiomics score based on multisequence MRI to predict vessels that encapsulate tumor cluster and/or microvascular invasion-positive hepatocellular carcinoma

扫码查看
目的 基于术前多序列MRI的多区域影像组学评分构建预测血管包绕肿瘤细胞簇和/或微血管侵犯阳性肝细胞癌(VM-HCC)的列线图模型.方法 回顾性分析2016年1月至2021年12月于南通大学附属南通第三医院接受根治性肝切除术的209例肝细胞癌(HCC)患者的临床资料,其中男性149例,女性60例,年龄(58.5±9.2)岁.209例患者分为训练集(n=146)和测试集(n=63).146例训练集患者根据病理结果分为两组:VM-HCC组(n=76)和非VM-HCC组(n=70).从动脉期及肝胆期图像分别提取瘤内、瘤周及联合感兴趣区影像组学特征,整合相同区域的动脉期和肝胆期组学特征得到双序列特征,经特征筛选后采用线性支持向量机及线性回归机器学习分类器构建不同序列不同区域的影像组学模型,最佳影像组学模型的选择基于测试集受试者工作特征(ROC)曲线下面积(AUC).logistic回归分析确定VM-HCC的独立预测因子,联合多因素logistic回归分析结果及最佳影像组学模型的影像组学评分构建可视化列线图.绘制ROC曲线并计算AUC评价模型的区分度.采用校准曲线及决策曲线分析(DCA)评估模型的校准度及临床效益.结果 影像组学模型中,基于支持向量机分类器的双序列-联合区域模型测试集AUC最高(AUC=0.764,95%CI:0.646~0.882).多因素logistic回归分析表明,维生素K缺乏或拮抗剂诱导的蛋白质-Ⅱ(PIVKA-Ⅱ)>40 mAU/ml(OR=4.266,95%CI:1.921~9.473,P<0.001)的 HCC 患者,VM-HCC 的风险高.联合PIVKA-Ⅱ>40 mAU/ml和影像组学评分构建的列线图模型预测VM-HCC的AUC在训练集和测试集中分别为 0.806(95%CI:0.733~0.867)及 0.817(95%CI:0.699~0.903).列线图校准曲线在训练集及测试集中均拟合良好.DCA表明,模型具有良好的临床效益.结论 基于多序列MRI的多区域影像组学评分的列线图模型对VM-HCC具有良好的预测效能,并可对HCC患者的复发进行风险分层.
Objective To develop a nomogram to predict vessels that encapsulate tumor cluster and/or microvascular invasion-positive hepatocellular carcinoma(VM-HCC)based on multiregional radiomics score derived from multisequence MRI.Methods Clinical data of 209 patients with HCC under-going radical liver resection at Affiliated Nantong Hospital 3 of Nantong University from January 2016 to December 2021 were retrospectively analyzed,including 149 males and 60 females,aged(58.5±9.2)years.Patients were divided into a training set(n=146)and a testing set(n=63).The patients in training set were further classified into two groups based on pathological results:the VM-HCC group(n=76)and the non-VM-HCC group(n=70).Radiomics features were extracted from the arterial phase and hepatobiliary phase images within the tumor,peritumor,and combined regions of interest.The arterial phase and hepato-biliary phase features from the same regions were integrated to obtain dual-sequence features.After feature selection,linear support vector machines(SVM)and linear regression machine learning classifiers were employed to construct radiomics models for different sequences and regions.The optimal radiomics model was selected based on the area under the receiver operating characteristic(ROC)curve from the testing set.Logistic regression analysis was performed to identify independent predictors of VM-HCC,and a visual nomo-gram was constructed using the results of the multivariate logistic regression analysis and the radiomics score of the optimal radiomics model.ROC curves were plotted,and area under curve(AUC)were calculated to evaluate the models'discriminatory ability.Calibration curves and decision curve analysis(DCA)were utilized to assess the model's calibration and clinical utility.Results Among the radiomics models,the dual-sequence-combined region model based on the SVM classifier exhibited the best AUC in the testing set(AUC=0.764,95%CI:0.646-0.882).Multivariate logistic regression analysis indicated that HCC patients with protein induced by vitamin K absence or antagonist-Ⅱ(PIVKA-Ⅱ)levels>40 mAU/ml(OR=4.266,95%CI:1.921-9.473,P<0.001)had a higher risk of VM-HCC.The nomogram combi-ning PIVKA-Ⅱ>40 mAU/ml and radiomics score achieved AUC of 0.806(95%CI:0.733-0.867)in the training set and 0.817(95%CI:0.699-0.903)in the testing set for predicting VM-HCC.Thecalibration curves of the nomogram showed good fit in both the training and testing sets.DCA indicated that the model possesses good clinical utility.Conclusion The nomogram based on multiregional radiomics score derived from multisequence MRI demonstrates a good predictive performance for VM-HCC,which could facilitate the risk stratification of recurrence in HCC patients.

Carcinoma,hepatocellularVessels that encapsulate tumor clusterMicrovascular invasionGd-EOB-DTPAMachine learning

刘子鑫、闫祖仪、张涛、张学琴、顾春燕、瞿琦、姜吉锋

展开 >

南通大学附属南通第三医院(南通市第三人民医院)放射科,南通 226006

南通大学附属南通第三医院(南通市第三人民医院)病理科,南通 226006

癌,肝细胞 血管包绕肿瘤细胞簇 微血管侵犯 钆塞酸二钠 机器学习

2024

中华肝胆外科杂志
中华医学会

中华肝胆外科杂志

CSTPCD北大核心
影响因子:1.846
ISSN:1007-8118
年,卷(期):2024.30(12)