首页|基于氧化应激相关基因构建预测肝细胞癌预后的logistic回归模型

基于氧化应激相关基因构建预测肝细胞癌预后的logistic回归模型

A logistic regression model for predicting the prognosis of hepatocellular carcinoma based on oxida-tive stress-related genes

扫码查看
目的 基于氧化应激相关基因构建预测肝细胞癌(HCC)患者预后的logistic回归模型.方法 从癌症基因组图谱(TCGA)数据库中下载HCC患者的数据集,同时从氧化应激数据库中提取氧化应激相关的基因.通过正常肝组织和HCC组织的差异分析以及单因素Cox回归分析,筛选出与HCC死亡风险相关的氧化应激基因.利用最小绝对值收敛和选择算子算法(LASSO)回归分析筛选预后相关的氧化应激基因,将LASSO回归筛选后的基因纳入logistic回归模型,构建预后预测模型.绘制评估模型准确性的受试者工作特征(ROC)曲线.利用国际癌症基因组联合体(ICGC)数据库对模型进行外部验证.结果 147个氧化应激相关基因在肝细胞癌组织和邻近的癌旁组织中表达差异具有统计学意义(均P<0.05).将单因素Cox回归分析筛选出43个预后相关基因纳入LASSO回归,得到11个非零系数的特征,将上述11个氧化应激基因纳入logistic回归模型,结果显示,SRXN1、G6PD、MAPK7、STK25、GLRX2、ANKZF1、STC2、APEX1、PRKCD、MT3、EZH2 基因阳性表达的 HCC 患者,术后死亡的风险高(均P<0.05).构建的logistic回归模型为:0.100 575 × SRXN1+0.002 908 × ANKZF1+0.010 061 × MAPK7+0.022 816 × STK25+0.018 489 × GLRX2+0.004 291 × G6PD+0.004 790 × STC2+0.000 135 × APEX1+0.007 531 × PRKCD+0.025 770 × MT3+0.079 615 × EZH2.logistic回归模型预测HCC患者术后1、2、3年生存的ROC曲线下面积(AUC)分别为0.798、0.752、0.720,提示该模型有较好的预测效能.依据TCGA队列建模的风险评分模型中位数4.80将ICGC中患者分为两组:高风险组(n=121)与低风险组(n=122).Kaplan-Meier生存曲线显示,高风险组累积生存率低于低风险组(P=0.003).结论 本研究构建的氧化应激相关基因模型可用于预测HCC患者的预后,有助于个体化治疗,并为临床决策提供参考.
Objective To develop a logistic regression model to predict the prognosis of patients with hepatocellular carcinoma(HCC)based the oxidative stress-related genes.Methods The HCC dataset was download from the cancer genome atlas(TCGA)database,and the oxidative stress-related genes were extracted from geneontology unifying biology database.Through the difference analysis and univariate Cox regression analysis of normal liver tissue and HCC tissue,the oxidative stress genes associated with HCC-related death were screened out.The least absolute shrinkage and selection opetator(LASSO)regression analysis were used to select prognostic oxidative stress genes,and the genes screened by LASSO regression were incorporated into the logistic regression model to construct the prognosis prediction model.The receiver operating characteristic(ROC)curve were used to assess the performance accuracy of the predictive model.The international cancer genome consortium(ICGC)database was used for external validation of the model.Results A total of 147 oxidative stress-related genes were differentially expressed between HCC tissues and adjacent non-cancerous tissues(all P<0.05).Forty-three prognostic genes were identified by univariate Cox regression analysis and included in LASSO regression,and subsequently 11 features with nonzero coeffi-cient were obtained.The 11 oxidative stress-related genes were incorporated into the logistic regression model.The findings revealed that HCC patients exhibiting positive expression of SRXN1,G6PD,MAPK7,STK25,GLRX2,ANKZF1,STC2,APEX1,PRKCD,MT3 and EZH2 genes had a significantly increased risk of postoperative death(all P<0.05).The logistic regression model was constructed as follows:0.100 575 × SRXN1+0.002 908 × ANKZF1+0.010 061 × MAPK7+0.022 816 × STK25+0.018 489 × GLRX2+0.004 291 × G6PD+0.004 790 × STC2+0.000 135 × APEX1+0.007 531 × PRKCD+0.025 770 × MT3+0.079 615 × EZH2.The logistic regression model demonstrated good predictive efficacy for the 1-,2-,and 3-year survival of HCC patients after surgery,the values in area under the curve of ROC is 0.798,0.752,and 0.720,respectively.According to the TCGA cohort,a median risk score model of 4.80 was estab-lished,which facilitated the division of ICGC patients into two distinct groups:the high-risk(n=121)and low-risk(n=122).The Kaplan-Meier survival curves demonstrated a significantly lower cumulative survival rate in the high-risk group(P=0.003).Conclusion The constructed logistic regression model of oxidative stress-related genes can be utilized to predict the outcome of HCC patients,thereby facilitating personalized treatment strategies and serving as a valuable reference for clinical decision-making.

Carcinoma,hepatocellularOxidative stressPrognostic model

欧文仕、翁山耕、林南平

展开 >

福建医科大学附属第一医院滨海院区国家区域医疗中心,福州 350000

福建医科大学附属第一医院肝胆外科,福州 350000

福建医科大学福建省腹部外科研究所,福州 350000

癌,肝细胞 氧化应激 预后模型

2024

中华肝胆外科杂志
中华医学会

中华肝胆外科杂志

CSTPCD北大核心
影响因子:1.846
ISSN:1007-8118
年,卷(期):2024.30(12)