首页|基于深度学习及Delta影像组学的唾液腺显像在甲状腺癌术后及131I治疗后唾液腺损伤评估中的价值

基于深度学习及Delta影像组学的唾液腺显像在甲状腺癌术后及131I治疗后唾液腺损伤评估中的价值

扫码查看
目的 探讨基于深度学习及Delta影像组学的唾液腺显像在评估甲状腺癌术后、131I治疗后患者唾液腺损伤中的价值.方法 回顾性收集2019年12月至2022年1月于桂林医学院附属医院接受甲状腺癌全切根治手术和131I治疗的223例甲状腺乳头状癌患者[男46例,女177例,年龄(47.7±14.0)岁]的资料.患者在131I治疗前、后均行唾液腺99TcmO4-SPECT显像,根据显像结果将患者按唾液腺功能情况(正常与损伤)分类标注后按7∶3分为训练集和测试集;基于唾液腺最大放射性计数时的图像和本底放射性计数时的图像训练ResNet-34神经网络模型作为特征提取器,用于提取结构化图像特征数据;采用Delta影像组学的方法将2个时期的图像特征值相减,通过配对t检验、Spearman秩相关性分析结合最小绝对收缩和选择算子(LASSO)算法进行特征筛选,建立逻辑回归(LR)、支持向量机(SVM)和K-最近邻(KNN)预测模型.将3种模型对测试集的唾液腺功能诊断情况与人工判读情况进行对比,并比较3种模型对测试集的AUC(Delong检验).结果 在测试集67例显像中,3位阅片医师的唾液腺功能诊断准确性分别为89.6%(60/67)、83.6%(56/67)和82.1%(55/67),所需时间分别为56、74和55 min;LR、SVM、KNN的判断准确性分别为91.0%(61/67)、86.6%(58/67)和82.1%(55/67),所需时间分别为12.5、15.3和17.9 s.3种影像组学模型均具有较好的分类预测能力,LR、SVM、KNN模型训练集AUC分别为0.972、0.965、0.943;测试集AUC分别为0.954、0.913、0.791,差异无统计学意义(z值:0.72、1.18、1.82,均P>0.05).结论 基于深度学习及Delta影像组学的模型对甲状腺癌术后、131I治疗后患者唾液腺损伤有较高的评估价值.
Value of salivary gland imaging based on deep learning and Delta radiomics in evaluation of salivary gland injury following 131I therapy post thyroid cancer surgery
Objective To explore the value of salivary gland imaging based on deep learning and Delta radiomics in assessing salivary gland injury after 131I treatment in post-thyroidectomy thyroid cancer patients.Methods A retrospective analysis on 223 patients(46 males,177 females,age(47.7±14.0)years)with papillary thyroid cancer,who underwent total thyroidectomy and 131I treatment in Affiliated Hospital of Guilin Medical University between December 2019 and January 2022,was conducted.All pa-tients underwent salivary gland 99TcmO4- imaging before and after 131I therapy.The patients were categorized according to salivary gland function based on 99TcmO4- imaging results(normal salivary gland vs salivary gland injury),and divided into training and test sets in a ratio of 7∶3.A ResNet-34 neural network model was trained using images at the time of maximum salivary gland radioactivity and those based on background radioactivity counts for structured image feature data.The Delta radiomics approach was then used to subtract the image feature values of the two periods,followed by feature selection through t-test,correlation analysis,and the least absolute shrinkage and selection operator(LASSO)algorithm,to develop logistic regression(LR),support vector machine(SVM),and K-nearest neighbor(KNN)predictive models.The diagnostic performance of 3 models for salivary gland function on the test set was compared with that of the manual in-terpretation.The AUCs of the 3 models on the test set were compared(Delong test).Results Among the 67 cases of the test set,the diagnostic accuracy of 3 physicians were 89.6%(60/67),83.6%(56/67),and 82.1%(55/67)respectively,with the time required for diagnosis of 56,74 and 55 min,respectively.The accuracies of LR,SVM,and KNN models were 91.0%(61/67),86.6%(58/67),and 82.1%(55/67),with the required times of 12.5,15.3 and 17.9 s,respectively.All 3 radiomics models demonstrated good classification and predictive capabilities,with AUC values for the training set of 0.972,0.965,and 0.943,and for the test set of 0.954,0.913,and 0.791,respectively.There were no significant differences among the AUC values for the test set(z values:0.72,1.18,1.82,all P>0.05).Conclusion The models based on deep learning and Delta radiomics possess high predictive value in assessing salivary gland injury follow-ing 131I treatment after surgery in patients with thyroid cancer.

Thyroid neoplasmsRadiotherapyIodine radioisotopesRadiation injuriesSalivary glandsRadiomicsDeep learning

曾钰瀧、葛昭、崇维霞、秦杰、莫碧云、付巍

展开 >

桂林医学院附属医院核医学科,桂林 541000

甲状腺肿瘤 放射疗法 碘放射性同位素 辐射损伤 涎腺 影像组学 深度学习

2024

中华核医学与分子影像杂志
中华医学会

中华核医学与分子影像杂志

CSTPCD北大核心
影响因子:1.107
ISSN:2095-2848
年,卷(期):2024.44(2)
  • 24