首页|18F-FDG PET影像组学在术前预测肺腺癌脉管浸润及脏层胸膜侵犯中的应用价值

18F-FDG PET影像组学在术前预测肺腺癌脉管浸润及脏层胸膜侵犯中的应用价值

扫码查看
目的 评估基于18F-FDG PET的影像组学模型在术前预测肺腺癌(LAC)脉管浸润(LVI)及脏层胸膜侵犯(VPI)的价值.方法 对2018年8月至2022年8月期间在南京医科大学附属泰州人民医院经手术病理确诊的87例LAC患者[男42例、女45例,年龄为(64.6±9.0)岁;共90个病灶]进行回顾性分析,基于PET图像提取、筛选影像组学特征,使用支持向量机(SVM)、逻辑回归(LR)、决策树(DT)和K-最近邻(KNN)算法构建机器学习模型;采用分层抽样法(Python中的StratifiedkFold函数)将数据按8∶2分成训练集和测试集,使用5折交叉验证法验证模型性能的稳定性并绘制ROC曲线,计算并比较AUC(Delong检验),评价影像组学模型预测LAC LVI及VPI的价值.结果 SVM、LR、DT、KNN模型预测LAC患者LVI的训练集AUC分别为0.91、0.90、0.91、0.91,测试集AUC为0.85、0.87、0.77、0.78;在预测 VPI 时,训练集 AUC 分别为 0.86、0.86、0.84、0.81,测试集分别为 0.82、0.80、0.69、0.78;SVM模型F1分数最佳,预测LVI和VPI时分别为0.59和0.66.4种模型间AUC差异无统计学意义(z值:-1.46~1.71,均P>0.05).结论 基于18F-FDG PET影像组学特征构建的机器学习模型对于术前预测LAC患者LVI及VPI均表现出良好的效能,有助于对LAC的风险分层及临床决策的制定.SVM模型在预测LVI和VPI中性能最佳.
Preoperative prediction of lymphovascular and visceral pleural invasion of lung adenocarcinoma based on 18F-FDG PET radiomics
Objective To evaluate the predictive value of 18F-FDG PET-based radiomics models for lymphovascular invasion(LVI)and visceral pleural invasion(VPI)in lung adenocarcinoma(LAC)pri-or to surgery.Methods Eighty-seven patients with LAC(42 males,45 females,age:(64.6±9.0)years;90 lesions)pathologically confirmed in the Affiliated Taizhou People's Hospital of Nanjing Medical Univer-sity between August 2018 and August 2022 were retrospectively included.Based on the radiomics features extracted from PET images,the machine learning models were constructed by using the support vector ma-chine(SVM),logical regression(LR),decision tree(DT),and K-nearest neighbor(KNN)algorithm.Stratified sampling(Python's StratifiedkFold function)was employed to divide the data into training set and test set at a ratio of 8∶2.The model stability was assessed using the 50%discount cross-validation.The ROC curve was drawn,and the AUC was calculated to evaluate the value of radiomics models in predicting LVI and VPI in LAC.Delong test was used to compare AUCs of different models.Results The radiomics mod-els(SVM,LR,DT,KNN)based on PET images showed good predictive value for LVI and VPI in patients with LAC.For LVI,the AUCs were 0.91,0.90,0.91,0.91 in the training set,and were 0.85,0.87,0.77,0.78 in the test set;for VPI,the AUCs were 0.86,0.86,0.84,0.81 in the training set,and were 0.82,0.80,0.69,0.78 in the test set.The F1 scores of the SVM model were the best(0.59 and 0.66 for predicting LVI and VPI respectively).The Delong test showed that there were no significant differences in AUCs among the four models(z values:from-1.46 to 1.71,all P>0.05).Conclusions The machine learning models based on 18 F-FDG PET radiomics features are effective in predicting LVI and VPI in patients with LAC prior to surgery.These models can assist clinicians in stratifying the risk of LAC and making informed clinical de-cisions.The SVM model has the best performance in predicting LVI and VPI.

Lung neoplasmsAdenocarcinomaNeoplasm invasivenessRadiomicsPositron-emission tomographyFluorodeoxyglucose F18

孙晓慧、刘志鹏、杨大壮、张俊

展开 >

南京医科大学附属泰州人民医院核医学科,泰州 225300

南京医科大学附属泰州人民医院信息科,泰州 225300

徐州矿务集团总医院影像科,徐州 221006

肺肿瘤 腺癌 肿瘤侵润 影像组学 正电子发射断层显像术 氟脱氧葡萄糖F18

2024

中华核医学与分子影像杂志
中华医学会

中华核医学与分子影像杂志

CSTPCD北大核心
影响因子:1.107
ISSN:2095-2848
年,卷(期):2024.44(2)
  • 26