首页|基于深度学习的锥形束CT钴铬合金全冠金属伪影去除研究

基于深度学习的锥形束CT钴铬合金全冠金属伪影去除研究

Mitigating metal artifacts from cobalt-chromium alloy crowns in cone-beam CT images through deep learning techniques

扫码查看
目的 建立基于深度学习的金属伪影去除系统(MARS),评估其对锥形束CT影像中不同厚度金属产生的伪影的去除效果.方法 采用三维打印的光敏树脂制作标准牙列模型(60mm× 75 mm×110mm),设计目标牙位(上颌、下颌双侧第一和第二前磨牙)为可拆卸替换牙位,通过置人不同厚度(轴面及(牙合)面厚度均分别为1.0、1.5、2.0mm,即A、B、C组)的钴铬合金全冠试件,获得完全配对的含有或不含有金属伪影的锥形束CT影像,并通过结构相似度(SSIM)及峰值信噪比(PSNR)评估不同厚度钴铬合金全冠试件产生伪影的范围.建立基于卷积神经网络(CNN)与U型网络(U-net)的MARS(CNN-MARS及U-net-MARS),检验CNN-MARS和U-net-MARS两种系统去伪影前后图像的SSIM值和PSNR值,评估其去伪影效果;通过可视化方式分析两种系统去除锥形束CT影像中金属伪影的效果.采用单因素方差分析分别对两种系统的SSIM值和PSNR值进行统计分析,检验水准为双侧α=0.05.结果A、B、C组钴铬合金全冠试件的SSIM值(分别为0.916±0.019、0.873±0.010、0.833± 0.010)和 PSNR 值(分别为 20.834±1.176、17.002±0.427、14.673±0.429)差异均有统计学意义(F=447.89,P<0.001;F=796.51,P<0.001),并且随着钴铬合金全冠试件厚度增加,其SSIM及PSNR值均显著增加(P<0.05).对含有同一厚度钴铬合金全冠试件的图像,采用CNN-MARS与U-net-MARS去伪影后的SSIM和PSNR值均显著高于伪影去除前(均P<0.05).使用CNN-MARS去U-net-MARS伪影后,含不同厚度钴铬合金全冠试件图像的SSIM值和PSNR值差异均无统计学意义(均P>0.05).CNN-MARS与U-net-MARS去伪影后图像与原始图像的相似度较高;相比U-net-MARS,CNN-MARS去伪影后仍可见较清晰的金属边缘,目标区域的组织结构恢复更完整.结论 本研究构建的锥形束CT图像金属伪影消除CNN-MARS与U-net-MARS模型,均可有效去除金属伪影的干扰,提升图像质量,且去伪影效果不受金属厚度的影响.相比于U-net-MARS,CNN-MARS对恢复伪影周围组织结构具有显著优势.
Objective To develop and evaluate metal artifact removal systems(MARS)based on deep learning to assess their effectiveness in removing artifacts caused by different thicknesses of metals in cone-beam CT(CBCT)images.Methods A full-mouth standard model(60 mmx75 mmx110 mm)was three-dimensional(3D)printed using photosensitive resin.The model included a removable and replaceable target tooth position where cobalt-chromium alloy crowns with varying thicknesses were inserted to generate matched CBCT images.The artifacts resulting from cobalt-chromium alloys with different thicknesses were evaluated using the structural similarity index measure(SSIM)and peak signal-to-noise ratio(PSNR).CNN-MARS and U-net-MARS were developed using a convolutional neural network and U-net architecture,respectively.The effectiveness of both MARSs were assessed through visualization and by measuring SSIM and PSNR values.The SSIM and PSNR values were statistically analyzed using one-way analysis of variance(α=0.05).Results Significant differences were observed in the range of artifacts produced by different thicknesses of cobalt-chromium alloys(all P<0.05),with 1 mm resulting in the least artifacts.The SSIM values for specimens with thicknesses of 1.0,1.5,and 2.0 mm were 0.916± 0.019,0.873±0.010,and 0.833±0.010,respectively(F=447.89,P<0.001).The corresponding PSNR values were 20.834±1.176,17.002±0.427,and 14.673±0.429,respectively(F=796.51,P<0.001).After applying CNN-MARS and U-net-MARS to artifact removal,the SSIM and PSNR values significantly increased for images with the same thickness of metal(both P<0.05).When using the CNN-MARS for artifact removal,the SSIM values for 1.0,1.5 and 2.0 mm were 0.938±0.023,0.930± 0.029,and 0.928±0.020(F=2.22,P=0.112),while the PSNR values were 30.938±1.495,30.578±2.154 and 30.553±2.355(F=0.54,P=0.585).When using the U-net-MARS for artifact removal,the SSIM values for 1.0,1.5 and 2.0 mm were 0.930±0.024,0.932±0.017 and 0.930±0.012(F=0.24,P=0.788),and the PSNR values were 30.291±0.934,30.351±1.002 and 30.271±1.143(F=0.07,P=0.929).No significant differences were found in SSIM and PSNR values after artifact removal using CNN-MARS and U-net-MARS for different thicknesses of cobalt-chromium alloys(all P>0.05).Visualization demonstrated a high degree of similarity between the images before and after artifact removal using both MARS.However,CNN-MARS displayed clearer metal edges and preserved more tissue details when compared with U-net-MARS.Conclusions Both the CNN-MARS and U-net-MARS models developed in this study effectively remove the metal artifacts and enhance the image quality.CNN-MARS exhibited an advantage in restoring tissue structure information around the artifacts compared to U-net-MARS.

Cone-beam computed tomographyConvolutional neural networkU-netMetal artifactsMetal artifact reduction

贾泠卉、林泓磊、郑松炜、林秀娇、张栋、于皓

展开 >

福建医科大学口腔医学院·附属口腔医院口腔修复科福建省口腔疾病研究重点实验室福建省口腔生物材料工程技术研究中心福建省高校口腔医学重点实验室福建医科大学口腔医学研究院福建医科大学口腔生物力学及美学研究中心,福州 350002

福州大学计算机与大数据学院,福州 350108

锥束计算机体层摄影术 卷积神经网络 U型网络 金属伪影 去伪影

福建省口腔疾病研究重点实验室开放基金(2021)

2021kq001

2024

中华口腔医学杂志
中华医学会

中华口腔医学杂志

CSTPCD北大核心
影响因子:1.194
ISSN:1002-0098
年,卷(期):2024.59(1)
  • 5