首页|基于改进RandLA-Net的铁路桥梁点云构件级分割方法

基于改进RandLA-Net的铁路桥梁点云构件级分割方法

扫码查看
随着无人机和激光扫描技术的快速发展,点云数据成为铁路桥梁施工进度管理的重要信息源.桥梁构件级结构的精细分割是施工进度监测和工期评估的关键步骤.为此,提出基于RandLA-Net改进的铁路桥梁点云构件级分割方法.首先,顾及自注意力机制,捕捉离散点之间的全局上下文语义关系,并嵌入位置编码块,增强点的位置特征;其次,根据输入特征动态调整权重或池化操作,改进注意力池化模块,使网络集中关注输入数据的特定区域,自适应地聚合来自相邻点的信息.结果表明,该方法在实际处理铁路桥梁点云数据集时,比RandLA-Net的平均交并比提升了 2.4%,具有良好的分割性能.
Method of Point Cloud Segmentation at Component Level of Railway Bridges Based on Improved RandLA-Net
With the rapid development of UAV and laser scanning technology,point cloud data has become an important information source for the construction progress management of railway bridges.Refined segmentation of bridge structure at the component level is a critical step in monitoring and assessing construction progress.Therefore,a method of point cloud segmentation at the component level of railway bridges based on improved RandLA-Net was proposed.First,the self-attention mechanism was considered to capture the global context semantic relations between discrete points and embed position encoding blocks to enhance the position features of points.Then,weights or pooling operations were dynamically adjusted according to input features to improve the attention pooling module so that the network can focus on specific areas of input data and adaptively aggregate information from adjacent points.According to the results,this method yielded a mean Intersection over Union(mIoU)2.4%higher than that of RandLA-Net in processing the point cloud dataset of railway bridges,and it delivers satisfactory segmentation performance.

3D point clouddeep learningsemantic segmentationrailway engineering dataattention mechanismpoint cloud data

吴承文、王万齐、卢文龙

展开 >

中国铁道科学研究院研究生部,北京 100081

中国铁道科学研究院集团有限公司电子计算技术研究所,北京 100081

三维点云 深度学习 语义分割 铁路工程数据 注意力机制 点云数据

中国铁道科学研究院集团有限公司科研开发基金

2022YJ078

2024

中国铁路
中国铁道科学研究院

中国铁路

北大核心
影响因子:0.407
ISSN:1001-683X
年,卷(期):2024.(4)
  • 19