首页|高速列车关键区域流场结构及气动噪声特性仿真分析

高速列车关键区域流场结构及气动噪声特性仿真分析

扫码查看
通过建立包含受电弓、转向架的3节编组列车数值模型,利用分离涡模型对车身流场进行计算,利用宽带噪声源模型和FW-H方程对车身表面源强以及远场气动噪声传播进行分析.研究结果表明:高速列车车身周围流动结构与噪声源位置密切相关;车头、车尾、受电弓、转向架区域为主要噪声源区域;随着列车运行速度的提高,车身表面声功率增加;气动噪声源强度主要取决于气流与构件之间相互作用状况,头车1位转向架表面声功率最高,随着纵向距离的增加,转向架表面声功率呈减小趋势.
Simulation Analysis of Flow Field Structure and Aerodynamic Noise Characteristics in Key Areas of High Speed Trains
By creating a numerical model of a three-car train incorporating pantographs and bogies,the carbody flow field was calculated using the detached-eddy model.The study analyzed the source intensity on the carbody surface and the propagation of far-field aerodynamic noise by employing the broadband noise source model and the FW-H equation.Key findings from the study include:(1)The flow structure around the carbody of high speed train relates closely to the noise source locations;(2)Primary noise sources are identified at the car head,car rear end,pantograph,and bogie areas;(3)The sound power on the carbody surface escalates as the vehicle speed increases;(4)The intensity of aerodynamic noise source relies significantly on the interaction between airflow and train components.The highest surface sound power belongs to the head car bogie at end No.1.The sound power on the bogie surface decreases as longitudinal distance increases.

high speed trainFW-H equationdetached-eddy simulationflow field structureaerodynamic noise

柳润东、李志强、伍向阳、潘永琛

展开 >

中国铁道科学研究院集团有限公司节能环保劳卫研究所,北京 100081

高速列车 FW-H方程 分离涡模拟 流场结构 气动噪声

中国国家铁路集团有限公司科技研发计划中国铁道科学研究院集团有限公司科研开发基金

P2022Z0032023YJ277

2024

中国铁路
中国铁道科学研究院

中国铁路

北大核心
影响因子:0.407
ISSN:1001-683X
年,卷(期):2024.(6)
  • 10