中华神经科杂志2024,Vol.57Issue(5) :481-487.DOI:10.3760/cma.j.cn113694-20230823-00074

脑结构网络的非rich-club连接协同性与卒中后抑郁发生的关联性研究

Association between the non-rich-club connectivity synergism of brain structural network and the occurrence of post-stroke depression

蔡玉姣 李洋 谢恺 徐宇浩 朱彦 罗一烽 曹志宏 李月峰
中华神经科杂志2024,Vol.57Issue(5) :481-487.DOI:10.3760/cma.j.cn113694-20230823-00074

脑结构网络的非rich-club连接协同性与卒中后抑郁发生的关联性研究

Association between the non-rich-club connectivity synergism of brain structural network and the occurrence of post-stroke depression

蔡玉姣 1李洋 1谢恺 1徐宇浩 2朱彦 3罗一烽 1曹志宏 1李月峰1
扫码查看

作者信息

  • 1. 江苏大学附属宜兴医院影像科,宜兴 214200
  • 2. 南京大学医学院附属鼓楼医院神经科,南京 210008
  • 3. 江苏大学附属医院影像科,镇江 212001
  • 折叠

摘要

目的 探究卒中事件后(康复早期)脑结构网络的变化与卒中后抑郁(PSD)发病的关联.方法 前瞻性收集江苏大学附属宜兴医院2020年3月至2021年5月收治的急性脑梗死拟出院患者87例,同期收集与之匹配的健康对照者34名.对所有受试者进行系统磁共振成像扫描和量表评估,并实施2年的纵向随访.依据随访时是否发生抑郁将患者纳入PSD组和卒中后非抑郁(PSND)组.基于图论分析方法对脑结构网络的拓扑特征进行分析,采用方差分析探究脑结构网络属性的组间差异.以Logistic回归模型分析差异性脑网络属性对PSD的预测效能.以线性回归分析非rich-club区域的协同性与rich-club连接变化的关系.结果 PSD组的rich-club连接和非rich-club 区域协同性显著低于PSND组(rich-club连接,P<0.01;支线连接/外围连接协同性,P<0.001).回归模型显示非rich-club区域协同性对PSD的发生具有良好的预测效能(OR=1.195,95%CI 1.073~1.471,P<0.001).线性回归分析结果进一步显示非rich-club区域协同性与△rich-club连接具有显著相关性(r=-0.691,P<0.001).结论 卒中康复早期良好的非rich-club区域的协同性可促进rich-club连接修复、抑制PSD发病.

Abstract

Objective To explore the association between changes in brain structural network during the early stage of stroke recovery and the onset of post-stroke depression(PSD).Methods A total of 87 acute ischemic stroke patients scheduled for discharge,who were admitted to the Yixing Hospital Affiliated to Jiangsu University from March 2020 to May 2021,were prospectively collected.During the same period,34 healthy control subjects matched with the stroke patients were also collected.All participants underwent systematic magnetic resonance imaging scans and scale assessments,and were followed up longitudinally for 2 years.Based on the occurrence of depression during follow-up,the stroke patients were divided into PSD group and post-stroke non-depression(PSND)group.Graph theoretical analysis was used to analyze the topological characteristics of brain structural network.Analysis of variance was used to explore the differences in brain structural network attributes among groups.Logistic regression model was used to analyze the predictive power of differential brain network attributes for PSD.Linear regression analysis was conducted to investigate the relationship between the synergism of non-rich-club regions and changes in rich-club connectivity.Results The rich-club connectivity and synergism of the non-rich-club regions were significantly lower in the PSD group than in the PSND group(rich-club connectivity,P<0.01;synergism of feeder/local,P<0.001).The regression model demonstrated that the synergism of non-rich-club regions had a good predictive power for the occurrence of PSD(OR=1.195,95%CI 1.073-1.471,P<0.001).Furthermore,linear regression analysis revealed a significant correlation between the synergism of non-rich-club regions and △rich-club connectivity(r=-0.691,P<0.001).Conclusion The good synergism of non-rich-club regions during the early stage of stroke recovery promotes the repair of rich-club connectivity and inhibits the onset of PSD.

关键词

卒中/卒中后抑郁/结构网络/非rich-club区域/预测

Key words

Stroke/Post-stroke depression/Structural network/Non-rich-club regions/Forecasting

引用本文复制引用

基金项目

国家自然科学基金(81871343)

江苏省重点研发计划(BE2021693)

出版年

2024
中华神经科杂志
中华医学会

中华神经科杂志

CSTPCD北大核心
影响因子:1.329
ISSN:1006-7876
参考文献量18
段落导航相关论文