首页|预训练深度学习神经网络模型在鉴别中枢神经系统肿瘤中的应用价值

预训练深度学习神经网络模型在鉴别中枢神经系统肿瘤中的应用价值

扫码查看
目的 构建基于MRI T1加权增强序列的预训练深度学习神经网络模型,并验证其鉴别诊断原发性中枢神经系统淋巴瘤(PCNSL)、胶质母细胞瘤(GBM)、脑转移瘤(BM)的效能.方法 回顾性分析2015年1月至2022年6月于中国医科大学附属第一医院神经外科行手术治疗、术后经病理学检查确诊为PCNSL、GBM、BM的患者.按筛选标准共纳入149例,其中PCNSL 43例、GBM 62例、BM 44例,随机划分为训练集和测试集.获取影像学数据后采用Slicer软件勾画感兴趣区域并进行预处理,基于EfficientNetV2构建深度学习神经网络模型,使用迁移学习方法在ImageNet上进行预训练和微调后,分别于训练集、测试集上训练和验证模型,计算其鉴别3种疾病的准确率、精确率、召回率(灵敏度)、特异度、Fl分数,并绘制受试者工作特征(ROC)曲线,计算ROC曲线下面积(AUC)以评估其诊断效能.结果 应用该模型总的诊断准确率为89.4%,平均AUC为0.96;该模型被用于鉴别诊断PCNSL、GBM、BM的灵敏度分别为 0.893、0.936、0.778,特异度分别为 0.996、0.877、0.955,F1 分数分别为 0.940、0.900、0.778,AUC(95%CI)分别为 0.98(0.946~0.997)、0.96(0.932~0.986)、0.95(0.905~0.980).结论 初步研究表明,本研究建立的预训练深度学习神经网络模型对PCNSL、GBM、BM有较优异的诊断效能.
The application value of pre-trained deep learning neural network model in differentiating central nervous system tumors
Objective To build a pre-trained deep learning neural network model based on MRI T1 weighted enhanced sequence;to evaluate the diagnostic performance of identifying the primary central nervous system lymphoma(PCNSL),glioblastoma(GBM)and brain metastase(BM).Methods A retrospective analysis were conducted on the patients who underwent surgical treatment and were diagnosed with PCNSL,GBM,and BM by postoperative pathological examination from January 2015 to June 2022 at the Neurosurgery Department of the First Affiliated Hospital of China Medical University.A total of 149 cases were enrolled according to the inclusion standard,including 43 PCNSL,62 GBM,and 44 BM.Those were randomly divided into a training set and a test set.After obtaining imaging data,the Slicer software was used for delineating regions of interest and pre-processing was conducted.A deep learning neural network model based on EfficientNetV2 with pre-trained and fine-tuned on ImageNet datasets was constructed,and then trained on the training set by transfer learning.The model was validated on the testing set,and then the classification performance metrics was evaluated by receiver operating characteristic(ROC)curves,accuracy,recall(sensitivity),precision,specificity,F1 score,and area under the ROC curve(AUC).Results The overall accuracy of the model was 89.4%and the average AUC was 0.96.The sensitivity of the model for PCNSL,GBM,BM were 0.893,0.936,and 0.778 respectively.The specificity were 0.996,0.877,and 0.955 respectively.The F1 score were 0.940,0.900,and 0.778 respectively.The AUC(95%CI)were 0.98(0.946-0.997),0.96(0.932-0.986)and 0.95(0.905-0.980)respectively.Conclusion The pre-trained deep learning neural network model trained on T1-weighted enhanced MRI scans has an outstanding diagnostic performance for PCNSL,GBM and BM.

Central nervous system neoplasmsDiagnosis,differentialLymphomaGlio-blastomaBrain metastasisDeep learning

王俊康、王率伊、刘济源、张建新、刘斌、李哲、胡锦渠、李志鹏、欧绍武、王军

展开 >

中国医科大学附属第一医院神经外科,沈阳 110001

大连民族大学计算机科学与工程学院,大连 116600

大连理工大学软件学院,国际信息与软件学院,大连 116620

大连理工大学-立命馆大学健康医疗智能计算联合研究中心,大连 116620

中山大学生物医学工程学院,广东省传感技术与生物医疗仪器重点实验室,深圳 518107

展开 >

中枢神经系统肿瘤 诊断,鉴别 淋巴瘤 胶质母细胞瘤 脑转移瘤 深度学习

2024

中华神经外科杂志
中华医学会

中华神经外科杂志

CSTPCD北大核心
影响因子:1.107
ISSN:1001-2346
年,卷(期):2024.40(4)
  • 34