首页|基于囊泡介导的转运相关基因构建透明细胞肾细胞癌预后模型和列线图

基于囊泡介导的转运相关基因构建透明细胞肾细胞癌预后模型和列线图

扫码查看
目的 探讨囊泡介导的转运相关基因(VMTGs)与透明细胞肾细胞癌(ccRCC)预后的关系,构建预后风险评分模型及列线图.方法 从癌症基因组图谱(TCGA)和基因表达数据库(GEO)分别获取601例和55例信息完整的ccRCC临床和转录组数据,从Reactome数据库下载722个VMTGs.使用"DEseq2"R包分析得到TCGA中肿瘤和正常样本的差异表达基因(DEGs),与VMTGs取交集得到142个差异表达的VMTGs,其中96个上调基因,46个下调基因.通过单因素Cox分析筛选得到59个预后相关基因.依次通过最小绝对值收敛与选择算子(LASSO)回归、逐步回归分析及多因素Cox分析构建模型.根据模型评分将患者分为高、低风险组,Kaplan-Meier生存曲线分析高、低风险组的生存差异.用GEO数据集对风险评分模型进行验证,分析高、低风险组生存差异.通过单因素和多因素Cox分析评估风险评分模型的预后价值.结合风险模型评分和临床特征构建列线图.结果 通过分析得到7个预后相关的VMTGs[驱动蛋白家族成员18B(KIF18B)、分拣蛋白1(SORT1)、溶质载体家族18成员A3(SLC18A3)、驱动蛋白家族成员13B(KIF13B)、血清淀粉样蛋白A1(SAA1)、锚蛋白3(ANK3)以及缝隙连接蛋白β1(GJB1)],用于构建风险评分模型,低风险组的预后优于高风险组,差异有统计学意义(x2=57.0,P<0.01).接受者操作特性曲线(ROC)中1、3、5年曲线下面积(AUC)分别为0.785、0.740、0.739,提示风险评分模型具有良好的预测效能.GEO队列中低风险组的预后优于高风险组,差异有统计学意义(x2=5.6,P<0.05),且1、3、5年的AUC分别为0.914、0.873、0.763,表明预测预后效能较好.单因素[风险比(HR)=2.718,95%置信区间(CI)=2.253~3.280,P<0.01]和多因素(HR=2.100,95%CI=1.717~2.570,P<0.01)Cox分析结果显示风险评分模型是独立的预后因素.列线图1、3、5年的AUC(分别为0.869、0.812、0.783)表明预测预后效能较好.校准曲线和决策曲线(DCA)显示列线图的预测准确性较好.结论 基于VMTGs的风险评分模型及列线图可以准确预测ccRCC患者的预后生存,且能对患者进行有效分层.
Construction of a prognostic model and column chart for clear cell renal cell carcinoma based on vesicle-mediated transport-related genes
Objective To investigate the relationship between vesicle-mediated transport genes(VMTGs)and the prognosis of clear cell renal cell carcinoma(ccRCC),aiming to develop a prognostic risk scoring model.Methods We obtained complete clinical and transcriptomic data of 601 and 55 ccRCC cases from the cancer genome atlas(TCGA)and the gene expression omnibus(GEO)databases,respec-tively.Subsequently,722 VMTGs were downloaded from the Reactome database.The differentially ex-pressed genes(DEGs)analysis was performed using the"DESeq2"R package to identify DEGs between tumor and normal samples in TCGA.Intersection of these DEGs with VMTGs revealed 142 differentially ex-pressed VMTGs,including 96 upregulated and 46 downregulated genes.A total of 59 prognostic-related genes were selected through single-factor Cox analysis.Models were then constructed using Least Absolute Shrinkage and Selection Operator(LASSO)regression,stepwise regression,and multi-factor Cox analysis.Patients were stratified into high and low-risk groups based on the model scores,and Kaplan-Meier survival curves were utilized to compare their survival differences.Subsequently,the risk scoring model was valida-ted using the GEO dataset to analyze survival discrepancies between high and low-risk groups.The prognos-tic value of the risk scoring model was evaluated through univariate and multivariate Cox analysis.A col-umn chart was constructed by combining the risk model score with clinical features.Results The analysis of 7 prognosis-related VMTGs[Kinesin family member 18B(KIF18B),Sortilin 1(SORT1),Solute Carrier Family 18 Member A3(SLC18A3),Kinesin family member 13(KIF13B),Serum Amyloid A1(SAA1),Ankyrin 3(ANK3),and Gap Junction Protein Beta 1(GJB1)]was conducted to construct a risk scoring model.The prognosis of the low-risk group was superior to that of the high-risk group,with a statistically significant difference(x2=57.0,P<0.01).The area under receiver operating characteristic(ROC)curve(AUC)at 1,3,and 5 years were 0.785,0.740,and 0.739,respectively,indicating good predictive per-formance of the risk scoring model.In the GEO cohort,the prognosis of the low-risk group was superior to that of the high-risk group,with a statistically significant difference(x2=5.6,P<0.05),and the AUCs at 1,3,and 5 years(0.914,0.873,and 0.763,respectively)suggested a good prognostic performance.Both univariate[hazard ratio(HR)=2.718,95%confidence interval(CI)=2.253-3.280,P<0.01]and multivariate Cox analysis(HR=2.100,95%CI=1.717-2.570,P<0.01)results indicated that the risk scoring model was an independent prognostic factor.The AUCs at 1,3,and 5 years(0.869,0.812,and 0.783,respectively)showed good prognostic performance of nomagram.Calibration curves and Deci-sion Curve Analysis(DCA)demonstrated the good predictive accuracy of the nomagram.Conclusion The risk scoring model and column chart based on VMTGs can accurately predict the prognosis of ccRCC pa-tients and effectively stratify the patients.

Renal cell carcinomaClear cellVesiclePrognostic modelNomagram

任梦达、骆永博、杜凯旋、曾佑苗、潘文邦、刘沅浩、戴义恒、张来来、顾朝辉

展开 >

郑州大学第一附属医院泌尿外科,郑州 450052

肾细胞癌 透明细胞 囊泡 预后模型 列线图

2024

中华实验外科杂志
中华医学会

中华实验外科杂志

CSTPCD
影响因子:0.759
ISSN:1001-9030
年,卷(期):2024.41(5)
  • 9