首页|需求不确定下的两阶段应急物流选址-路径研究

需求不确定下的两阶段应急物流选址-路径研究

扫码查看
针对灾后应急救援在需求不确定和资源受限方面的问题,以多级应急物流网络为背景,构建了一个需求不确定下的两阶段应急选址-路径规划模型.该模型以总成本最小和救援车辆运输总距离最短为目标,采用三角模糊数刻画受灾点的不确定需求,并采用基于可信性的模糊机会约束规划方法,以消除约束条件中的不确定参数.模型第一阶段调用Gurobi求解器,求解得到应急配送中心选址结果和对受灾点的分配方案;第二阶段将选址及分配结果作为输入进行路径规划,并提出一种改进的自适应遗传算法(IAGA)对算例进行求解.然后采用自适应遗传算法(AGA)与之对比,并进行灵敏度分析.结果表明:IAGA在目标值、收敛速度和运行时间等方面均优于AGA,证明了IAGA具有一定的可行性和有效性,且可以为决策者提供较优的应急选址-路径规划方案,从而提升灾后救援的效率.
Research on Two-stage Emergency Logistics Location-Routing Problem with Uncertain Demand
Aiming at the problems of uncertain demand and limited resources in post-disaster emergency rescue,a two-stage emergency location-path planning model under uncertain demand is constructed based on the background of multi-level emergency logistics network.The model aims at minimizing the total cost and the total transportation distance of rescue vehicles.The triangular fuzzy number is used to describe the uncertain demand of the affected points,and the fuzzy chance constrained programming method based on credibility is used to eliminate the uncertain parameters in the constraint conditions.In the first stage of the model,the Gurobi solver is called to solve the location result of the emergency distribu-tion center and the allocation scheme of the disaster point.In the second stage,the location and allocation results are used as input for path planning,and an improved adaptive genetic algorithm(IAGA)is proposed to solve the example.And at last,the adaptive genetic algorithm(AGA)is used to compare with it,and the sensitivity analysis is carried out.The re-sults show that IAGA is superior to AGA in terms of target value,convergence speed and running time,which proves that IAGA has certain feasibility and effectiveness,and can provide decision makers with better emergency location-path plan-ning scheme,so as to improve the efficiency of post-disaster rescue.

emergency logisticslocation-routing problemGurobifuzzy requirementsimproved adaptive ge-netic algorithm

王庆荣、王雪娜、朱昌锋、李裕杰

展开 >

兰州交通大学 电子与信息工程学院,甘肃 兰州 730070

兰州交通大学 交通运输学院,甘肃 兰州 730070

应急物流 选址-路径问题 Gurobi 模糊需求 改进的自适应遗传算法

2025

灾害学
陕西省地震局

灾害学

北大核心
影响因子:1.548
ISSN:1000-811X
年,卷(期):2025.40(1)