首页|基于小样本学习的网络异常流量检测

基于小样本学习的网络异常流量检测

扫码查看
网络结构具有较高复杂性,因此导致各种异常流量现象层出不穷,其中包括一些标注样本极少的新型异常流量类型。为了有效识别标注样本量极少的异常情况,设计了一种基于小样本学习的网络异常流量检测方法。该方法利用基于小样本的迁移学习技术识别异常流量,从而确保了网络安全。
Abnormal Network Traffic Detection Based on Small Sample Learning
The high complexity of network structure leads to various abnormal traffic phenomena,in-cluding some new abnormal traffic types with few labeled samples.In order to effectively identify the abnormal situations with few labeled samples,an abnormal network traffic detection method based on small sample learning is designed.The method uses the transfer learning technology based on small samples to identify the abnormal traffic.Thus,it can ensure the network security.

small sampletransfer learningabnormal network traffic

李荣宽、丁乙、王寒凝、贺宁

展开 >

电科云(北京)科技有限公司 北京 100041

解放军61932部队 北京 100000

东南大学网络空间安全学院 南京 211189

小样本 迁移学习 网络异常流量

军委科技委项目

2024

指挥信息系统与技术
中国电子科技集团公司第二十八研究所

指挥信息系统与技术

影响因子:0.707
ISSN:1674-909X
年,卷(期):2024.15(2)
  • 22