首页|基于最小圆覆盖的多无人机协同螺旋式搜索优化算法

基于最小圆覆盖的多无人机协同螺旋式搜索优化算法

扫码查看
针对无人机群广域协同覆盖搜索问题,基于最小圆覆盖技术从环境建模、任务分配和航迹规划3个方面研究了搜索优化算法。首先,采用搜索区域的最小圆覆盖技术进行环境建模,以覆盖圆圆心为关键点对任务区域进行描述;然后,采用螺旋法结合模板法的搜索策略,按搜索路径遍历关键点进行全局路径规划;接着,考虑无人机直线飞行和转弯飞行的能耗差异,将无人机群总任务转化为该路径的总能耗,基于总能耗的均分实现无人机群的任务和路径分配,从而形成一个整体解决方案;最后,针对圆形和不规则凸多边形搜索区域开展了仿真计算,并比较了该算法与平行搜索法的效率,结果表明该算法有效且更优。
Optimization Algorithm for Multi-UAV Collaborative Spiral Search Based on Minimum Circle Coverage
Aiming at the wide area collaborative coverage search problem of unmanned aerial vehicle(UAV)swarms,an optimization algorithm for search based on minimum circle coverage technology is studied from environment modeling,task allocation and path planning.Firstly,environment model-ing with minimum circle coverage of the search area is carried out,and the task area is described,tak-ing the center of coverage circles as the key points.Then,adopting a search strategy combining the spiral method with the template method,global path planning is carried out by traversing the key points along the search path.Next,considering the difference on energy consumption between straight flight and turning flight of UAVs,the total task of the UAV swarm is converted into the total energy consumption of the path.The task and path allocation problem of the drone swarm is solved based on the average of the total energy consumption.Thus,a comprehensive solution is formed.Finally,aim-ing at the search area like a circle or an irregular convex polygon,the simulation calculation is conduct-ed,and its efficiency is compared with the parallel search method.Result shows that the algorithm is effect and more superior.

multi unmanned aerial vehicles(UAVs)coverage searchcollaborative searchmini-mum circle coverageenvironment modelingroute planningtask allocation

赵一骁、何航天、李雨楠、邱玲

展开 >

北京工业大学数学统计学与力学学院 北京 100124

北京工业大学信息学部 北京 100124

多无人机 覆盖搜索 协同搜索 最小圆覆盖 环境建模 航迹规划 任务分配

2024

指挥信息系统与技术
中国电子科技集团公司第二十八研究所

指挥信息系统与技术

影响因子:0.707
ISSN:1674-909X
年,卷(期):2024.15(4)