首页|基于SARIMA-LSTM模型的航空旅客运输市场需求分析与预测

基于SARIMA-LSTM模型的航空旅客运输市场需求分析与预测

扫码查看
市场需求预测是航空公司开展生产活动的前提,科学合理的预测结果能为航空公司降低成本、提高效益。首先,选取影响航空旅客运输市场需求的因素,并对其进行相关性分析;其次,采用季节性差分自回归移动平均(SARIMA)模型和长短期记忆(LSTM)网络模型,对航空旅客运输市场需求量进行特征分析,构建了基于SARIMA模型、LSTM网络模型的组合预测(SARIMA-LSTM)模型,提高市场需求时间序列预测的精度;最后,以北京市航空运输市场为例,分析结果显示,SARIMA-LSTM组合模型的预测准确性高于单一模型,对于市场需求的预测准确率较高。
Analysis and Forecast on Air Passenger Transport Market Demand Based on SARIMA-LSTM Model
Market demand forecast is the premise of airlines to carry out production activities.Scientif-ic and reasonable prediction results can reduce costs and improve efficiency for airlines.Firstly,the factors affecting the market demand of air passenger transportation are selected,and their relativities are analyzed accordingly.Then,the seasonal auto regressive integrated moving average(SARIMA)model and the long short term memory(LSTM)network model are used to analyze the characteristics of air passenger transport market demand.A combined forecasting(SARIMA-LSTM)model based on SARIMA model and LSTM network model is constructed to improve the accuracy of market de-mand time series forecast.Finally,taking the air transport market in Beijing as an example,the analy-sis results show that the SARIMA-LSTM combination model has a higher forecasting accuracy than the single model,and the forecasting accuracy of market demand is superior.

seasonal auto regressive integrated moving average(SARIMA)modellong short term memory(LSTM)network modelSARIMA-LSTM combination modeldemand forecast

田勇、董斌、于楠、孙梦圆、李千千、郭梁

展开 >

南京航空航天大学民航学院 南京 211106

空中交通管理系统全国重点实验室 南京 210023

季节性差分自回归移动平均(SARIMA)模型 长短期记忆(LSTM)网络模型 SARIMA-LSTM组合模型 需求预测

2024

指挥信息系统与技术
中国电子科技集团公司第二十八研究所

指挥信息系统与技术

影响因子:0.707
ISSN:1674-909X
年,卷(期):2024.15(5)