首页|基于SARIMA-LSTM组合的机场起降量短时预测方法

基于SARIMA-LSTM组合的机场起降量短时预测方法

扫码查看
机场起降量短时预测方法是根据空中交通流量管理需求,对机场未来24小时时间跨度内起降量情况进行预测。首先,构建了基于季节性差分自回归移动平均(SARIMA)和长短期记忆神经网络(LSTM)的机场起降量预测模型;然后,根据误差倒数法确定组合预测权重以期得到更好的预测效果;最后,使用天津滨海机场进行实例验证,以机场起降量的小时数据建立了SARIMA(0,1,7)×(0,1,1)24和LSTM模型,并分别以0。600和0。400的权重建立了组合预测模型。验证结果显示,组合模型的预测指标R2达到0。904,较反向传播(BP)神经网络等其他单一模型预测性能更佳。
Short-Term Forecasting Method for Airport Takeoff and Landing Volume Based on SARIMA-LSTM Combination
Short-term forecasting methods according to the demand of air traffic flow management,predict the airport takeoff and landing volume within a 24-hour time span.Firstly,an airport takeoff and landing volume forecasting models based on seasonal auto regressive integrated moving average(SARIMA)and long short term memory network(LSTM)is constructed.Then,with the error re-ciprocal method,the combined forecasting weights are determined to achieve better prediction results.Finally,using Tianjin Binhai Airport as an example to verify the model,the SARIMA(0,1,7)×(0,1,1)24 and LSTM models based on hourly takeoff and landing volume data are built,and a com-bined prediction model with weights of 0.600 and 0.400 respectively is established.The verification re-sults show that the prediction indicator R2 of the combined model reaches 0.904.It demonstrates better prediction performance than back propagation(BP)neural network and other single models.

airport takeoff and landing volumeseasonal auto regressive integrated moving average(SARIMA)modellong short term memory network(LSTM)modelerror reciprocal method

杨慧云、李印凤、段满珍、阮昌

展开 >

华北理工大学应急管理与安全工程学院 河北 唐山 063210

唐山市空地智慧交通重点实验室 河北 唐山 063210

中国民用航空华北地区空中交通管理局 北京 100621

机场起降量 季节性差分自回归移动平均(SARIMA)模型 长短期记忆神经网络(LSTM)模型 误差倒数法

2024

指挥信息系统与技术
中国电子科技集团公司第二十八研究所

指挥信息系统与技术

影响因子:0.707
ISSN:1674-909X
年,卷(期):2024.15(5)