首页|血清代谢标志物在妊娠期糖尿病早期预测及诊断中的应用

血清代谢标志物在妊娠期糖尿病早期预测及诊断中的应用

扫码查看
目的 探索血清代谢标志物在妊娠期糖尿病(GDM)早期预测及诊断中的潜在应用价值.方法 回顾性病例对照研究.研究对象来自2018年11月1日至2020年3月30日入组浙江大学医学院附属妇产科医院出生队列研究的孕妇.回顾性选取100例GDM病例[GDM组,年龄(36.03±3.91)岁]以及临床信息匹配的150例非GDM孕妇[对照组,年龄(35.49±3.46)岁]作为研究对象,对在孕15~20周(GDM诊断之前,T1期)和孕24~28周(GDM诊断时期,T2期)冻存的空腹血清样本,基于液相色谱-串联质谱技术(LC-MS/MS),对GDM相关血清代谢小分子(1,5-脱水葡萄糖醇、3-羟基丁酸、苯丙氨酸及异亮氨酸等)进行靶向定量分析,以及代谢小分子组合对GDM的诊断/预测分析,并联合临床基本信息(年龄、孕周、体重指数)和空腹血糖(FPG)建立T1期的GDM早期预测模型和T2期的GDM诊断模型.采用t检验或Mann-Whitney U检验对数据进行分析.结果 靶向定量验证研究结果显示:在T1期,GDM组的1,5-脱水葡萄糖醇水平低于对照组(P=0.001),异亮氨酸水平高于对照组(P=0.027),3-羟基丁酸及苯丙氨酸水平差异无统计学意义(P>0.05),4种代谢物联合对GDM的预测价值最高,AUC值0.670(95%CI 0.602~0.739),P<0.001;在T2期,GDM组的1,5-脱水葡萄糖醇水平低于对照组(P<0.05),3-羟基丁酸及异亮氨酸高于对照组(P<0.05),苯丙氨酸在GDM组和对照组差异无统计学意义(P=0.626),4种代谢物联合对GDM的诊断价值最高,AUC值0.717(95%CI0.651~0.783),P<0.001.4种代谢物与临床基本信息、常规生化指标联合建立的7种不同组合的GDM预测/诊断模型分析显示:T2期以FPG、BMI、孕前BMI、年龄、孕周、4种代谢物指标建立的GDM诊断模型的AUC值最佳,为0.794(95%CI0.736~0.851),P<0.001,敏感度为72%;T1期以相同指标建立的GDM预测模型的AUC值最佳为0.711(95%CI 0.646~0.776),P<0.001,敏感度为77%.结论 1,5-脱水葡萄糖醇、3-羟基丁酸、苯丙氨酸及异亮氨酸4个代谢小分子与常规生化指标(FPG)、临床信息(年龄、孕周、BMI)联合建立的T1期GDM预测模型和T2期GDM诊断模型显示出一定的临床预测/诊断效能.1,5-脱水葡萄糖醇、3-羟基丁酸、苯丙氨酸及异亮氨酸有作为GDM预测/诊断的候选标志物的潜力.
A preliminary study of serum metabolic markers in the early prediction and diagnosis of gestational diabetes mellitus
Objective To identify serum metabolic markers for early prediction and diagnosis of gestational diabetes mellitus(GDM).Methods A retrospective case-control study was conducted.The study subjects were from pregnant women enrolled in the Birth Cohort Study of the Women's Hospital,Zhejiang University,from1 November 2018 to 30 March 2020.100 cases of GDM(GDM group,Age 36.03±3.91)and 150 non-GDM pregnant women matched for clinical information(control group,Age35.49±3.46)were retrospectively selected for the study.Fasting serum samples were collected at 15-20 weeks of gestation(prior to GDM diagnosis,T1 period)and 24-28 weeks of gestation(during GDM diagnosis,T2 period).Liquid chromatography-tandem mass spectrometry(LC-MS/MS)was used to quantify GDM-related serum metabolic small molecules,including 1,5-anhydroglucitol,3-hydroxybutyric acid,phenylalanine,and isoleucine.These molecules,along with basic clinical information(age,gestational week,BMI)and standard biochemical indicators(FPG),were used to develop predictive models for the early detection of GDM at T1 and the diagnosis of GDM at T2.Statistical analysis was performed using t-tests or Mann-Whitney U-tests.Result The results of the targeted quantitative validation study indicate:At the T1 stage,the level of 1,5-anhydroglucitol was found to be significantly lower(P=0.001)in the GDM group compared to the control group.Conversely,the level of isoleucine was significantly higher(P=0.027)in the GDM group.There were no significant differences in the levels of 3-hydroxybutyrate and phenylalanine between the two groups(P>0.05).The combination of the 4 metabolites yielded the highest predictive value(AUC)for GDM at T1,with an AUC of 0.670(95%CI:0.602-0.739),P<0.001.At the T2 stage,the GDM group had significantly lower levels of 1,5-anhydroglucitol(P<0.05)and significantly higher levels of 3-hydroxybutyric acid and isoleucine(P<0.05)than the control group,with no significant differences in phenylalanine levels(P=0.626).The combination of the four metabolites had the highest diagnostic value(AUC)for GDM,0.717(95%CI 0.651-0.783),P<0.001.The analysis of seven different combinations of GDM prediction/diagnostic models created by combining four metabolites with basic clinical information and routine biochemical indicators showed:We found that the AUC value of the GDM diagnostic model built with FPG,BMI,pre-pregnancy BMI,age,gestational week,and the 4 metabolite indicators in T2 stage was the best,0.794(95%CI 0.736-0.851),P<0.001,with a sensitivity of 72%;The best AUC value for the GDM prediction model built with the same indicators at T1 was 0.711(95%CI 0.646-0.776),P<0.001,with a sensitivity of 77%.Conclusions Four metabolic small molecules,1,5-anhydroxyglucitol,3-hydroxybutyric acid,phenylalanine,and isoleucine,were integrated with clinical indicators(FPG)and clinical information(age,gestational week,BMI)to develop a predictive model for GDM at gestation(T1)and a diagnostic model for GDM at gestation(T2),demonstrating promising clinical prediction and diagnostic capabilities.1,5-Anhydroglucitol,3-hydroxybutyric acid,phenylalanine,and isoleucine show potential as valuable markers for the prediction and diagnosis of GDM.

Gestational diabetesMetabolomicsPredictionDiagnosisSerum metabolic markers

陈卓鹏、尹彬彬、丁丽婧、陈雁、沈逸筠、朱宇宁

展开 >

浙江大学医学院附属妇产科医院检验科,浙江省妇产疾病临床医学研究中心,杭州 310006

妊娠期糖尿病 代谢组学 预测 诊断 血清代谢标志物

国家重点研发计划

2018YFC1002702

2024

中华检验医学杂志
中华医学会

中华检验医学杂志

CSTPCD北大核心
影响因子:1.402
ISSN:1009-9158
年,卷(期):2024.47(8)