首页|基于贝叶斯优化XGBoost的Ⅰ类切口预防用抗菌药物多标签处方点评

基于贝叶斯优化XGBoost的Ⅰ类切口预防用抗菌药物多标签处方点评

扫码查看
目的 本研究构建基于贝叶斯优化XGBoost的Ⅰ类切口预防用抗菌药物多标签处方点评模型,并使用SHAP解释方法分析不同特征的影响,以达到合理进行抗菌药物管理和有效解决抗菌药物的耐药性.方法 数据集来源于2021年11月-2022年10月中国东北某三甲医院Ⅰ类切口手术的临床抗菌药物处方及患者的相关信息,本研究共使用了处方数据、患者数据、手术数据和抗菌药物数据这4种类型的数据,建立多种机器学习模型进行比较,并从中选择效果最好的XGBoost模型,采用分类器链来处理多标签问题,并采用贝叶斯优化算法进行模型优化调参,最后利用SHAP值对模型特征进行解释.结果 GP-XGBoost模型在准确率、精确度、召回率、特异性、F1分数、曲线下面积(AUC)等多项指标上均表现更好,准确率达到0.995,曲线下面积达到0.980.实验验证了使用TF-IDF算法将非结构化文本数据融入预测模型能够有效地提升模型的泛化能力;通过SHAP可解释性分析发现开嘱科室、抗菌药物名称、单次用药剂量、用药疗程、是否集采、用药频度(DDDs)在6个二元分类器中均发挥了重要作用,表明处方点评模型更关注与药物有关的信息.结论 证明了机器学习方法在抗菌药物处方点评中的有效性,而SHAP解释方法可以识别判断不合理处方的重要影响因素,对于抗菌类药物处方的精细化点评、合理化开具以及降低医疗成本具有实际意义.
Multi-label prescription review for prophylactic use of antibiotics in type Ⅰ incision based on Bayesian optimized XGBoost
OBJECTIVE To construct a multi-label prescription review model for the usage of antimicrobials in typeⅠ incision based on Bayesian optimized extreme gradient boosting(XGBoost)and analyze the impacts of different properties by SHAP(SHapley Additive exPlanations)to achieve the goal of reasonable management of antimicro-bials and effective solutions to antimicrobial resistance.METHODS The clinical antimicrobial prescription data for type Ⅰ incision and patients'information were collected from a three-A hospital in Northeast China from Nov.2021 to Oct.2022.Four types of data were used including prescriptions,patients,surgeries and antimicrobials.Multiple machine learning models were established and compared to select the most effective XGBoost model,classifier chains were used to handle multi-labels problem,Bayesian algorithms were used to optimize the model parameters,and the SHAP values were used to explain the model properties.RESULTS The GP-XGBoost model performed the best in terms of accuracy,precision,recall,specificity,F1 score,Area under the receiver operating characteristic curve(AUC)and other indicators,with the accuracy of 0.995 and AUC of 0.980.It was verified that the generalization ability of the model could be effectively improved by the TF-IDF algorithm integrating un-structured text data into the prediction model.By SHAP interpretable analysis,the department for prescribing,antimicrobials'name,single dose administration,drug usage duration,whether centrally procured and defined daily doses(DDDs)played an important role in the six binary classifiers,which indicated that the prescription re-view model paid more attention to the drug-related information.CONCLUSION Machine learning methods are ef-fective in antimicrobial prescription reviews,and the SHAP explanation method can identify the important factors that influence the judgment of unreasonable prescriptions.Both have practical significance for refined reviews of antimicrobial prescriptions,rational prescribing and reducing medical costs.

Type Ⅰ incisionProphylactic antibioticsPrescription reviewMulti-label learningXGBoostBayes-ian optimization

杨光飞、郁自翔、周子尧、丁爱丽、吴迎杰、郭也琪、周雨欣、阳信

展开 >

大连理工大学附属中心医院(大连市中心医院)药学部,辽宁大连 116033

大连理工大学系统工程研究所,辽宁大连 116024

Ⅰ类切口 预防用抗菌药物 处方点评 多标签学习 XGBoost 贝叶斯优化

2024

中华医院感染学杂志
中华预防医学会 中国人民解放军总医院

中华医院感染学杂志

CSTPCD北大核心
影响因子:1.885
ISSN:1005-4529
年,卷(期):2024.34(23)