首页|基于RBF神经网络的储能VSG控制策略优化

基于RBF神经网络的储能VSG控制策略优化

Optimization of energy storage VSG Control strategy based on RBF neural networks

扫码查看
针对传统储能VSG(虚拟同步发电机)不能较好地同时具备抗扰动能力和快速动态响应能力的问题,提出一种以RBF(径向基函数)神经网络优化动态同步器的储能VSG控制策略.首先,建立VSG的数学模型,分析转动惯量和阻尼系数配置对VSG性能的影响,得出参数配置在动态响应和系统动态稳定的矛盾关系.其次,将转子的暂态不平衡功率作为三层前向结构RBF神经网络算法的输入,通过RBF神经网络算法在线学习得出最优暂态补偿功率来动态调节VSG的输入功率,从而减少转子的不平衡转矩,提高VSG的暂态稳定性.最后,通过仿真对比实验验证了所提控制策略的有效性.
In response to the issue that traditional energy storage VSGs(virtual synchronous generators)cannot si-multaneously possess good disturbance resistance and rapid dynamic response capabilities,a control strategy for en-ergy storage VSGs is proposed,optimizing the dynamic synchronizer using RBF(radial basis function)neural net-works.First,a mathematical model for VSG is established,analyzing the impact of rotor inertia and damping coeffi-cient configuration on VSG performance.This analysis reveals the conflicting relationship between parameter con-figuration and dynamic response versus system dynamic stability.Subsequently,the transient unbalanced power of the rotor is taken as input for a three-layer forward structure RBF neural network algorithm.Through online learning with the RBF neural network algorithm,the optimal transient compensation power is obtained to dynamically adjust the input power of VSG,thereby reducing unbalanced rotor torque and enhancing the transient stability of VSG.Fi-nally,simulation and comparative experiments are conducted to validate the effectiveness of the proposed control strategy.

virtual synchronous generator controlRBF neural networkdynamic synchronizer controlenergy stor-age invertertransient stability

管敏渊、姚瑛、吴圳宾、满敬彬、吴伟强

展开 >

国网浙江省电力有限公司湖州供电公司,浙江 湖州 313000

浙江泰仑电力集团有限责任公司,浙江 湖州 313000

上海电力大学 电气工程学院,上海 200090

国网浙江长兴县供电有限公司,浙江 湖州 313100

展开 >

虚拟同步机控制 RBF神经网络 同步器动态控制 储能逆变器 暂态稳定

国家电网浙江省电力公司集体企业科技项目国家重点研发计划

2019-HUZJTKJ-192022YFB2404300

2024

浙江电力
浙江省电力学会 浙江省电力试验研究院

浙江电力

CSTPCD
影响因子:0.438
ISSN:1007-1881
年,卷(期):2024.43(3)
  • 30