首页|基于改进BP-Bagging算法的光伏电站故障诊断方法

基于改进BP-Bagging算法的光伏电站故障诊断方法

A fault diagnosis method for photovoltaic power plants based on an enhanced BP-Bagging algorithm

扫码查看
针对基于机器学习算法的光伏电站故障诊断方法存在的样本数据失衡问题,提出一种基于改进BP-Bagging算法的光伏电站故障诊断方法.首先,基于BP神经网络构建光伏数据与光伏故障类型的映射关系,实现光伏故障诊断;然后,基于随机欠采样方法改进Bagging算法,解决样本的类不平衡问题;接着,针对BP网络存在的过拟合问题,提出基于改进BP-Bagging算法的光伏电站故障诊断模型,并行训练多个BP网络,根据投票法得出故障诊断结果;最后,设置不同算法对照实验,计算出关于模型准确率的评价指标,证明所提方法具有较高的综合性能,在一定程度上能够解决光伏电站故障诊断中的样本类不平衡问题,提高光伏电站故障诊断的准确率.
In response to the challenge of sample data imbalance in fault diagnosis methods for photovoltaic power plants based on machine learning,the paper proposes a fault diagnosis method leveraging an enhanced BP-Bagging algorithm.Firstly,a mapping relationship between photovoltaic data and fault types is established using a BP neural network to achieve fault diagnosis in photovoltaic systems.Subsequently,the Bagging algorithm is enhanced by uti-lizing random under-sampling(RUS)to address the issue of class imbalance in samples.Furthermore,to tackle the problem of overfitting in the BP network,the paper introduces a fault diagnosis model for photovoltaic power plants based on the enhanced BP-Bagging.This involves parallel training of multiple BP networks and determining fault di-agnosis results through a voting method.Finally,the paper conducts comparative experiments with different algo-rithms,calculates evaluation metrics related to model accuracy,and validates that the proposed method demon-strates high overall performance.To a certain extent,it effectively mitigates the challenge of sample class imbalance in fault diagnosis of photovoltaic power plants,thereby improving the accuracy of fault diagnosis in such systems.

photovoltaic power stationfault diagnosisrandom under-samplingensemble learning

祁炜雯、张俊、吴洋、范强、赵峰、陈建国、王健

展开 >

国网浙江省电力有限公司绍兴供电公司,浙江 绍兴 312362

国网浙江省电力有限公司,杭州 310007

河海大学 能源与电气学院,南京 211100

光伏电站 故障诊断 随机欠采样 集成学习

国家电网浙江省电力公司科技项目

5211SX220001

2024

浙江电力
浙江省电力学会 浙江省电力试验研究院

浙江电力

CSTPCD
影响因子:0.438
ISSN:1007-1881
年,卷(期):2024.43(3)
  • 25