首页|基于CNN-LSTM-Attention的配电网拓扑实时辨识方法

基于CNN-LSTM-Attention的配电网拓扑实时辨识方法

A real-time topology identification method of distribution networks based on CNN-LSTM-Attention

扫码查看
配电网中准确的拓扑结构辨识对运行和控制具有重要意义,针对实际配电网拓扑结构变动的情况,搭建了可智能辨识配电网拓扑结构的深度学习模型.首先,生成不同拓扑结构下的配电网量测数据并进行数据预处理.其次,构建了融合CNN(卷积神经网络)、LSTM(长短期记忆网络)和Attention(注意力机制)的拓扑结构智能辨识模型,并结合历史量测数据对模型训练并测试.最后,在IEEE 33节点和PG&E69节点配电系统仿真算例中,验证了该基于CNN-LSTM-Attention模型的拓扑辨识方法相较于传统辨识方法在辨识精度上的优越性,实现了该模型的在线应用.
Accurate identification of the topology in a distribution network is crucial for its operation and control.Ad-dressing the dynamic changes in the actual topology of distribution networks,an intelligent deep learning model ca-pable of recognizing distribution network topologies was developed.Firstly,measurement data for distribution net-works under different topologies were generated,followed by data preprocessing.Subsequently,an intelligent topol-ogy identification model was constructed,integrating convolutional neural network(CNN),long short-term memory network(LSTM),and Attention mechanism.The model was trained and tested using historical measurement data.Finally,in simulation scenarios using the IEEE 33-node and PG&E69-node distribution systems,the superiority of this CNN-LSTM-Attention-based topology identification method over traditional approaches in terms of identification accuracy was validated,and online application of the model was achieved.

distribution networkstopology identificationconvolutional neural networklong short-term memory networkAttention mechanism

凌佳凯、章逸舟、胡金峰、秦军、戴健、费有蝶、朱振

展开 >

国网江苏省电力有限公司无锡供电分公司,江苏 无锡 214061

河海大学 电气与动力工程学院,南京 211100

配电网 拓扑辨识 卷积神经网络 长短期记忆网络 注意力机制

国家电网江苏省电力公司科技项目

J2021026

2024

浙江电力
浙江省电力学会 浙江省电力试验研究院

浙江电力

CSTPCD
影响因子:0.438
ISSN:1007-1881
年,卷(期):2024.43(3)
  • 1
  • 26