首页|基于图转换和迁移学习的低压配电网户变关系和相位识别方法

基于图转换和迁移学习的低压配电网户变关系和相位识别方法

A household-transformer relationships and phase identification method of low-voltage distribution networks based on graph transformation and transfer learning

扫码查看
为进一步提高低压配电网户变关系和相位识别的准确性,提出一种基于图转换和迁移学习的低压配电网户变关系和相位识别方法.首先,引入了基于格拉姆角场的图转换方法实现用电数据的二维化,以更好地发现一维时序用电数据间的差异性;然后,针对低压配电网用户数据稀缺、获取途径有限、样本数量较少等问题,基于迁移学习利用预训练好的参数权重,构建了适合户变关系和相位识别的深度学习模型.通过实验验证,所提模型在户变关系识别和相位识别中的准确率较主流方法均有所提升,拥有更好的稳定性.
A method based on graph transformation and transfer learning is proposed to further enhance the accuracy of household-transformer relationships and phase identification in low-voltage distribution networks.Firstly,a graph transformation method based on Gramian angular field(GAF)is introduced to convert electricity consumption data into a two-dimensional representation,facilitating the identification of differences in one-dimensional time-series electricity consumption data.Next,to address challenges such as sparse user data in low-voltage distribution net-works,limited data acquisition methods,and a scarcity of samples,a deep learning model suitable for household-transformer relationship and phase identification is constructed using transfer learning and leveraging pre-trained pa-rameter weights.Experimental validation demonstrates that the proposed model outperforms mainstream methods in both household-transformer relationship and phase identification,exhibiting improved accuracy and stability.

low-voltage distribution networkshousehold-transformer relationship and phase recognitionGramian angular summation fieldtransfer learningdeep learning model

欧锋、罗醒华、龙经纬、徐超群、赖国清、杨慧敏

展开 >

广东电网有限责任公司云浮供电局,广东 云浮 527300

东南大学,南京 210096

低压配电网 户变关系和相位识别 格拉姆角和场 迁移学习 深度学习模型

南方电网公司重点科技项目

035300KK52190077GDKJXM20198298

2024

浙江电力
浙江省电力学会 浙江省电力试验研究院

浙江电力

CSTPCD
影响因子:0.438
ISSN:1007-1881
年,卷(期):2024.43(3)
  • 30