首页|基于知识图谱的电力杆塔主要构件识别方法研究

基于知识图谱的电力杆塔主要构件识别方法研究

Research on a recognition method of main components of electric power towers using knowledge graph

扫码查看
电力杆塔主要构件的图像识别是无人机巡检的主要内容,准确识别杆塔构件对保障电网运行具有重要价值.为此,提出一种基于深度学习和知识图谱的电力杆塔主要构件识别方法.首先,建立不同构件类型的拓扑关系,形成杆塔空间知识图谱;其次,设计语义关系推理模型,融合构件语义特征与拓扑关系,得到增强特征;最后,拼接增强特征与原始特征,实现特征融合.实验表明:在未架线电力杆塔多目标识别方面,所提方法比Reasoning-RCNN、Cascade-RCNN及Faster-RCNN的识别效果好,能够精准识别杆塔主要构件,对无人机电力巡检具有参考价值.
The image recognition of the main components of electric power towers is a primary focus of UAV inspec-tions,as accurately identifying these tower components holds significant value for ensuring the smooth operation of power grids.To address this need,the paper proposes a method for recognizing the main components of electric power towers based on deep learning and knowledge graph.Firstly,the paper establishes topological relationships between component types,forming a spatial knowledge graph of the towers.Subsequently,it designs a model for se-mantic relationship inference that integrates semantic features of components with their topological relationships,re-sulting in feature enhancement.Finally,by concatenating these enhanced features with the original features,feature fusion is achieved.Experimental results demonstrate that the proposed method outperforms Reasoning-RCNN,Cascade-RCNN,and Faster-RCNN in the multi-target recognition of unstrung towers.It enables precise recognition of the main tower components,thus offering valuable insights for UAV-based power line inspections.

deep learningelectric power towerintelligent recognitionknowledge graphReasoning-RCNN

陈志忠、熊泽森、姚东、郑欢、宋维铜、杨志新、贾涛

展开 >

广东电网有限责任公司汕尾供电局,广东 汕尾 516600

武汉大学 遥感信息工程学院,武汉 430000

深度学习 电力杆塔 智能识别 知识图谱 Reasoning-RCNN

国家自然科学基金南方电网科技项目

419713320315002022030201JJ00025

2024

浙江电力
浙江省电力学会 浙江省电力试验研究院

浙江电力

CSTPCD
影响因子:0.438
ISSN:1007-1881
年,卷(期):2024.43(5)
  • 24